Rongrong Chen , Qianhan Wei , Yan Liu , Jiankun Li , Xuemei Du , Yan Chen , Jianhua Wang , Yunjun Liu
{"title":"五肽重复序列蛋白EMP601通过影响线粒体转录物ccmC的RNA编辑在玉米种子发育中的作用","authors":"Rongrong Chen , Qianhan Wei , Yan Liu , Jiankun Li , Xuemei Du , Yan Chen , Jianhua Wang , Yunjun Liu","doi":"10.1016/j.cj.2023.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Although several pentatricopeptide repeat (PPR) proteins are involved in post-transcriptional processing of mitochondrial RNA, it is unclear which specific protein is involved in the RNA editing of <em>ccmC</em> in maize (<em>Zea mays</em>). Here we report the identification of the maize <em>empty pericarp 601</em> (<em>emp601</em>) mutant and the map-based cloning of the <em>Emp601</em> gene, which encodes an E2-type PPR protein that is targeted to mitochondria. A single-nucleotide deletion in the <em>emp601</em> mutant caused a frameshift and introduced a premature stop codon into the predicted EMP601. This mutation was associated with reduced accumulation of mitochondrial complex III as well as with inhibition of growth and differentiation of basal endosperm transfer layer cells, leading to final degeneration of the embryo and endosperm. We determine that loss of EMP601 function prevents the C-to-U RNA editing of the mitochondrial transcript <em>ccmC</em> at position 358. EMP601 binds to the <em>ccmC</em> transcript and directly interacts with Multiple organellar RNA editing factor 8 and may be a component of the plant mitochondrial editosome. We conclude that EMP601 functions in RNA editing of mitochondrial <em>ccmC</em> transcripts and influences mitochondrial function and seed development.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 5","pages":"Pages 1368-1379"},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The pentatricopeptide repeat protein EMP601 functions in maize seed development by affecting RNA editing of mitochondrial transcript ccmC\",\"authors\":\"Rongrong Chen , Qianhan Wei , Yan Liu , Jiankun Li , Xuemei Du , Yan Chen , Jianhua Wang , Yunjun Liu\",\"doi\":\"10.1016/j.cj.2023.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although several pentatricopeptide repeat (PPR) proteins are involved in post-transcriptional processing of mitochondrial RNA, it is unclear which specific protein is involved in the RNA editing of <em>ccmC</em> in maize (<em>Zea mays</em>). Here we report the identification of the maize <em>empty pericarp 601</em> (<em>emp601</em>) mutant and the map-based cloning of the <em>Emp601</em> gene, which encodes an E2-type PPR protein that is targeted to mitochondria. A single-nucleotide deletion in the <em>emp601</em> mutant caused a frameshift and introduced a premature stop codon into the predicted EMP601. This mutation was associated with reduced accumulation of mitochondrial complex III as well as with inhibition of growth and differentiation of basal endosperm transfer layer cells, leading to final degeneration of the embryo and endosperm. We determine that loss of EMP601 function prevents the C-to-U RNA editing of the mitochondrial transcript <em>ccmC</em> at position 358. EMP601 binds to the <em>ccmC</em> transcript and directly interacts with Multiple organellar RNA editing factor 8 and may be a component of the plant mitochondrial editosome. We conclude that EMP601 functions in RNA editing of mitochondrial <em>ccmC</em> transcripts and influences mitochondrial function and seed development.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 5\",\"pages\":\"Pages 1368-1379\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000351\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000351","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
The pentatricopeptide repeat protein EMP601 functions in maize seed development by affecting RNA editing of mitochondrial transcript ccmC
Although several pentatricopeptide repeat (PPR) proteins are involved in post-transcriptional processing of mitochondrial RNA, it is unclear which specific protein is involved in the RNA editing of ccmC in maize (Zea mays). Here we report the identification of the maize empty pericarp 601 (emp601) mutant and the map-based cloning of the Emp601 gene, which encodes an E2-type PPR protein that is targeted to mitochondria. A single-nucleotide deletion in the emp601 mutant caused a frameshift and introduced a premature stop codon into the predicted EMP601. This mutation was associated with reduced accumulation of mitochondrial complex III as well as with inhibition of growth and differentiation of basal endosperm transfer layer cells, leading to final degeneration of the embryo and endosperm. We determine that loss of EMP601 function prevents the C-to-U RNA editing of the mitochondrial transcript ccmC at position 358. EMP601 binds to the ccmC transcript and directly interacts with Multiple organellar RNA editing factor 8 and may be a component of the plant mitochondrial editosome. We conclude that EMP601 functions in RNA editing of mitochondrial ccmC transcripts and influences mitochondrial function and seed development.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.