Lei Wu , Yujie Chang , Lanfen Wang , Liang Ji , Lin Peng , Shumin Wang , Jing Wu
{"title":"干旱胁迫下普通大豆产量相关性状的遗传分析","authors":"Lei Wu , Yujie Chang , Lanfen Wang , Liang Ji , Lin Peng , Shumin Wang , Jing Wu","doi":"10.1016/j.cj.2022.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>Drought stress severely impairs common bean production. For facilitating drought-resistance breeding in common bean, molecular markers were identified in a genome-wide level marker–trait association study. A panel of 210 common bean accessions showed large variation in 11 agronomic traits at the adult stage (plant height, pod number per plant, seed number per pod, seed number per plant, seed yield per plant, pod length, harvest index, pod harvest index, days to maturity, hundred-seed weight, and seed yield) under two water conditions. The coefficient of variation ranged from 6.21% for pod harvest index to 51.00% for seed number per plant under well-watered conditions, and from 4.05% for days to maturity to 40.72% for seed number per plant under drought stress. In a genome-wide association study, 119 quantitative-trait loci were associated with drought resistance, including 41 adjacent to known loci. Among these loci, 12 were found to be associated with at least two traits. Three major loci were identified at Pv01 and Pv02. A set of candidate genes were found that encode MYBs, AREBs, WKRYs, and protein kinases. These results reveal promising alleles that control drought resistance, shedding light on the genetic basis of drought resistance and accelerating future efforts for drought resistance improvement in common bean.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 4","pages":"Pages 1097-1105"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic dissection of yield-related traits in response to drought stress in common bean\",\"authors\":\"Lei Wu , Yujie Chang , Lanfen Wang , Liang Ji , Lin Peng , Shumin Wang , Jing Wu\",\"doi\":\"10.1016/j.cj.2022.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drought stress severely impairs common bean production. For facilitating drought-resistance breeding in common bean, molecular markers were identified in a genome-wide level marker–trait association study. A panel of 210 common bean accessions showed large variation in 11 agronomic traits at the adult stage (plant height, pod number per plant, seed number per pod, seed number per plant, seed yield per plant, pod length, harvest index, pod harvest index, days to maturity, hundred-seed weight, and seed yield) under two water conditions. The coefficient of variation ranged from 6.21% for pod harvest index to 51.00% for seed number per plant under well-watered conditions, and from 4.05% for days to maturity to 40.72% for seed number per plant under drought stress. In a genome-wide association study, 119 quantitative-trait loci were associated with drought resistance, including 41 adjacent to known loci. Among these loci, 12 were found to be associated with at least two traits. Three major loci were identified at Pv01 and Pv02. A set of candidate genes were found that encode MYBs, AREBs, WKRYs, and protein kinases. These results reveal promising alleles that control drought resistance, shedding light on the genetic basis of drought resistance and accelerating future efforts for drought resistance improvement in common bean.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 4\",\"pages\":\"Pages 1097-1105\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514122002562\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514122002562","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Genetic dissection of yield-related traits in response to drought stress in common bean
Drought stress severely impairs common bean production. For facilitating drought-resistance breeding in common bean, molecular markers were identified in a genome-wide level marker–trait association study. A panel of 210 common bean accessions showed large variation in 11 agronomic traits at the adult stage (plant height, pod number per plant, seed number per pod, seed number per plant, seed yield per plant, pod length, harvest index, pod harvest index, days to maturity, hundred-seed weight, and seed yield) under two water conditions. The coefficient of variation ranged from 6.21% for pod harvest index to 51.00% for seed number per plant under well-watered conditions, and from 4.05% for days to maturity to 40.72% for seed number per plant under drought stress. In a genome-wide association study, 119 quantitative-trait loci were associated with drought resistance, including 41 adjacent to known loci. Among these loci, 12 were found to be associated with at least two traits. Three major loci were identified at Pv01 and Pv02. A set of candidate genes were found that encode MYBs, AREBs, WKRYs, and protein kinases. These results reveal promising alleles that control drought resistance, shedding light on the genetic basis of drought resistance and accelerating future efforts for drought resistance improvement in common bean.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.