Pervez H. Zaidi , Madhumal Thayil Vinayan , Sudha K. Nair , Prakash H. Kuchanur , Ramesh Kumar , Shyam Bir Singh , Mahendra Prasad Tripathi , Ayyanagouda Patil , Salahuddin Ahmed , Aamir Hussain , Atul Prabhakar Kulkarni , Passang Wangmo , Mitchell R. Tuinstra , Boddupalli M. Prasanna
{"title":"低地热带热带热带湿热干燥环境下的耐热玉米:从育种到改进种子输送","authors":"Pervez H. Zaidi , Madhumal Thayil Vinayan , Sudha K. Nair , Prakash H. Kuchanur , Ramesh Kumar , Shyam Bir Singh , Mahendra Prasad Tripathi , Ayyanagouda Patil , Salahuddin Ahmed , Aamir Hussain , Atul Prabhakar Kulkarni , Passang Wangmo , Mitchell R. Tuinstra , Boddupalli M. Prasanna","doi":"10.1016/j.cj.2023.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change-induced heat stress combines two challenges: high day- and nighttime temperatures, and physiological water deficit due to demand-side drought caused by increase in vapor-pressure deficit. It is one of the major factors in low productivity of maize in rainfed stress-prone environments in South Asia, affecting a large population of smallholder farmers who depend on maize for their sustenance and livelihoods. The International Maize and Wheat Improvement Center (CIMMYT) maize program in Asia, in partnership with public-sector maize research institutes and private-sector seed companies in South Asian countries, is implementing an intensive initiative for developing and deploying heat-tolerant maize that combines high yield potential with resilience to heat and drought stresses. With the integration of novel breeding tools and methods, including genomics-assisted breeding, doubled haploidy, field-based precision phenotyping, and trait-based selection, new maize germplasm with increased tolerance to heat stress is being developed for the South Asian tropics. Over a decade of concerted effort has resulted in the successful development and release of 20 high-yielding heat-tolerant maize hybrids in CIMMYT genetic backgrounds. Via public–private partnerships, eight hybrids are presently being deployed on over 50,000 ha in South Asian countries, including Bangladesh, Bhutan, India, Nepal, and Pakistan.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat-tolerant maize for rainfed hot, dry environments in the lowland tropics: From breeding to improved seed delivery\",\"authors\":\"Pervez H. Zaidi , Madhumal Thayil Vinayan , Sudha K. Nair , Prakash H. Kuchanur , Ramesh Kumar , Shyam Bir Singh , Mahendra Prasad Tripathi , Ayyanagouda Patil , Salahuddin Ahmed , Aamir Hussain , Atul Prabhakar Kulkarni , Passang Wangmo , Mitchell R. Tuinstra , Boddupalli M. Prasanna\",\"doi\":\"10.1016/j.cj.2023.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change-induced heat stress combines two challenges: high day- and nighttime temperatures, and physiological water deficit due to demand-side drought caused by increase in vapor-pressure deficit. It is one of the major factors in low productivity of maize in rainfed stress-prone environments in South Asia, affecting a large population of smallholder farmers who depend on maize for their sustenance and livelihoods. The International Maize and Wheat Improvement Center (CIMMYT) maize program in Asia, in partnership with public-sector maize research institutes and private-sector seed companies in South Asian countries, is implementing an intensive initiative for developing and deploying heat-tolerant maize that combines high yield potential with resilience to heat and drought stresses. With the integration of novel breeding tools and methods, including genomics-assisted breeding, doubled haploidy, field-based precision phenotyping, and trait-based selection, new maize germplasm with increased tolerance to heat stress is being developed for the South Asian tropics. Over a decade of concerted effort has resulted in the successful development and release of 20 high-yielding heat-tolerant maize hybrids in CIMMYT genetic backgrounds. Via public–private partnerships, eight hybrids are presently being deployed on over 50,000 ha in South Asian countries, including Bangladesh, Bhutan, India, Nepal, and Pakistan.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000922\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000922","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Heat-tolerant maize for rainfed hot, dry environments in the lowland tropics: From breeding to improved seed delivery
Climate change-induced heat stress combines two challenges: high day- and nighttime temperatures, and physiological water deficit due to demand-side drought caused by increase in vapor-pressure deficit. It is one of the major factors in low productivity of maize in rainfed stress-prone environments in South Asia, affecting a large population of smallholder farmers who depend on maize for their sustenance and livelihoods. The International Maize and Wheat Improvement Center (CIMMYT) maize program in Asia, in partnership with public-sector maize research institutes and private-sector seed companies in South Asian countries, is implementing an intensive initiative for developing and deploying heat-tolerant maize that combines high yield potential with resilience to heat and drought stresses. With the integration of novel breeding tools and methods, including genomics-assisted breeding, doubled haploidy, field-based precision phenotyping, and trait-based selection, new maize germplasm with increased tolerance to heat stress is being developed for the South Asian tropics. Over a decade of concerted effort has resulted in the successful development and release of 20 high-yielding heat-tolerant maize hybrids in CIMMYT genetic backgrounds. Via public–private partnerships, eight hybrids are presently being deployed on over 50,000 ha in South Asian countries, including Bangladesh, Bhutan, India, Nepal, and Pakistan.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.