代谢组和转录组的综合分析揭示了野生山楂果实风味形成的潜在机制

IF 4.6 1区 生物学 Q1 PLANT SCIENCES Plant Diversity Pub Date : 2023-09-01 DOI:10.1016/j.pld.2023.02.001
Xien Wu , Dengli Luo , Yingmin Zhang , Ling Jin , M. James C. Crabbe , Qin Qiao , Guodong Li , Ticao Zhang
{"title":"代谢组和转录组的综合分析揭示了野生山楂果实风味形成的潜在机制","authors":"Xien Wu ,&nbsp;Dengli Luo ,&nbsp;Yingmin Zhang ,&nbsp;Ling Jin ,&nbsp;M. James C. Crabbe ,&nbsp;Qin Qiao ,&nbsp;Guodong Li ,&nbsp;Ticao Zhang","doi":"10.1016/j.pld.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as <em>Crataegus</em> <em>chungtienensis</em>, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of <em>C. chungtienensis</em>, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of <em>C. chungtienensis</em>, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of <em>C. chungtienensis</em> may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)\",\"authors\":\"Xien Wu ,&nbsp;Dengli Luo ,&nbsp;Yingmin Zhang ,&nbsp;Ling Jin ,&nbsp;M. James C. Crabbe ,&nbsp;Qin Qiao ,&nbsp;Guodong Li ,&nbsp;Ticao Zhang\",\"doi\":\"10.1016/j.pld.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as <em>Crataegus</em> <em>chungtienensis</em>, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of <em>C. chungtienensis</em>, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of <em>C. chungtienensis</em>, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of <em>C. chungtienensis</em> may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.</p></div>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246826592300029X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246826592300029X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

山楂是我国重要的药用和食用植物,具有悠久的保健历史。除栽培山楂外,其他野生山楂也可能具有良好的药用和食用价值,如分布在中国西南地区的特有种——重庆山楂。在本研究中,通过整合春天山楂成熟果实的风味相关代谢组和转录组数据,我们对山楂果实品质的形成有了了解。结果表明,在春田幼果和成熟果中共检测到849种代谢产物,其中黄酮类化合物是检测最多的代谢产物。在差异积累的代谢产物中,水苏糖、麦芽四糖和顺乌头酸在果实成熟过程中显著增加,这些可能是影响果实风味变化的重要代谢产物。此外,与幼果相比,果实成熟后几种黄酮类化合物和萜类化合物减少。因此,利用春天的未成熟果实可以获得更多的药用活性成分,如黄酮类和萜类化合物。此外,我们筛选出了一些与果实品质形成相关的差异表达基因,这些基因与差异积累的糖、酸、黄酮和萜类化合物有重要关系。我们的研究为野生山楂在果实发育和成熟过程中风味的形成提供了新的见解,同时为改善山楂果实风味奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)

Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as Crataegus chungtienensis, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of C. chungtienensis, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of C. chungtienensis, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of C. chungtienensis may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
期刊最新文献
Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia. The mid-domain effect in flowering phenology. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation A review of ethnobotanical studies reveals over 500 medicinal plants in Mindanao, Philippines Progress in systematics and biogeography of Orchidaceae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1