浮力作用下气泡动力学机理研究

Shan-fang Huang
{"title":"浮力作用下气泡动力学机理研究","authors":"Shan-fang Huang","doi":"10.1016/j.nucana.2023.100060","DOIUrl":null,"url":null,"abstract":"<div><p>The motion of a single bubble in a 2-D vertical channel filled with stagnant or moving fluid is simulated for various sets of conditions using the computational fluid dynamics(CFD) method. The volume of fluid (VOF) model is applied to track the interface of the bubble. Corresponding results are compared with experimental and theoretical studies, and good agreement is achieved. Two-phase flows composed of various fluids are simulated to check the impact of physical properties on bubble dynamics, and buoyancy is found to have a key influence on the bubble rising behavior, including both the trajectory and the terminal rising velocity. The dimensionless number Bu is introduced to characterize this effect, and a larger Bu leads to a larger bubble rising velocity. Three other dimensionless numbers Eo, We, and Mo are introduced to study the bubble deformation which can be characterized by aspect ratio E, and an approximately linear relationship is found between E, Eo, and bubble size. Inertial force is proved to influence the bubble motion significantly in moving fluid, whose velocity dominates the bubble terminal speed. The simulation of motion for two bubbles is also performed and investigated detailedly.</p></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism study of bubble dynamics under the buoyancy effects\",\"authors\":\"Shan-fang Huang\",\"doi\":\"10.1016/j.nucana.2023.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The motion of a single bubble in a 2-D vertical channel filled with stagnant or moving fluid is simulated for various sets of conditions using the computational fluid dynamics(CFD) method. The volume of fluid (VOF) model is applied to track the interface of the bubble. Corresponding results are compared with experimental and theoretical studies, and good agreement is achieved. Two-phase flows composed of various fluids are simulated to check the impact of physical properties on bubble dynamics, and buoyancy is found to have a key influence on the bubble rising behavior, including both the trajectory and the terminal rising velocity. The dimensionless number Bu is introduced to characterize this effect, and a larger Bu leads to a larger bubble rising velocity. Three other dimensionless numbers Eo, We, and Mo are introduced to study the bubble deformation which can be characterized by aspect ratio E, and an approximately linear relationship is found between E, Eo, and bubble size. Inertial force is proved to influence the bubble motion significantly in moving fluid, whose velocity dominates the bubble terminal speed. The simulation of motion for two bubbles is also performed and investigated detailedly.</p></div>\",\"PeriodicalId\":100965,\"journal\":{\"name\":\"Nuclear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773183923000149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183923000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用计算流体动力学(CFD)方法,在各种条件下模拟了充满停滞或移动流体的二维垂直通道中单个气泡的运动。流体体积(VOF)模型用于跟踪气泡的界面。将相应的结果与实验和理论研究进行了比较,取得了良好的一致性。模拟了由各种流体组成的两相流,以检验物理性质对气泡动力学的影响,发现浮力对气泡上升行为有关键影响,包括轨迹和终端上升速度。引入无量纲数Bu来表征这种效应,Bu越大,气泡上升速度越大。引入其他三个无量纲数Eo、We和Mo来研究气泡变形,其可以用长径比E来表征,并且发现E、Eo和气泡尺寸之间存在近似线性关系。惯性力对运动流体中气泡的运动有显著影响,其速度决定了气泡的终端速度。并对两个气泡的运动进行了详细的模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism study of bubble dynamics under the buoyancy effects

The motion of a single bubble in a 2-D vertical channel filled with stagnant or moving fluid is simulated for various sets of conditions using the computational fluid dynamics(CFD) method. The volume of fluid (VOF) model is applied to track the interface of the bubble. Corresponding results are compared with experimental and theoretical studies, and good agreement is achieved. Two-phase flows composed of various fluids are simulated to check the impact of physical properties on bubble dynamics, and buoyancy is found to have a key influence on the bubble rising behavior, including both the trajectory and the terminal rising velocity. The dimensionless number Bu is introduced to characterize this effect, and a larger Bu leads to a larger bubble rising velocity. Three other dimensionless numbers Eo, We, and Mo are introduced to study the bubble deformation which can be characterized by aspect ratio E, and an approximately linear relationship is found between E, Eo, and bubble size. Inertial force is proved to influence the bubble motion significantly in moving fluid, whose velocity dominates the bubble terminal speed. The simulation of motion for two bubbles is also performed and investigated detailedly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
A comparative analysis of the NaI detector response function using GAMOS and FLUKA Monte Carlo simulations Coulomb interaction dependence of optimal energy to synthesize superheavy elements Structural insights into soft matter materials via spin echo small angle neutron scattering and small angle neutron scattering Major and trace elements determination in organic and conventional Moroccan vegetables using the k0-standardisation method of neutron activation analysis Gold nanoparticle effect on dose and DNA damage enhancement in the vicinity of gold nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1