{"title":"利用全球导航卫星系统无线电掩星确定全球对流层顶高度","authors":"Mohamed Zhran , Ashraf Mousa","doi":"10.1016/j.ejrs.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>The tropopause layer is a crucial stratum of the earth's atmosphere that attracts more interest from climate and atmospheric researchers. The observables of the global navigation satellite system (GNSS) allow for continuous and long-term research of the atmosphere. The Meteorological Operational Satellite Program (MetOp) mission has a large number of radio occultation (RO) events globally with a high vertical resolution. For investigating the atmosphere, GNSS RO is regarded as a great active remote sensing approach. The present paper investigates the tropopause height (TPH) globally using 5,738,483 GNSS RO measurements of MetOp from 2007 to 2021 to analyze the monthly and yearly variability patterns of TPHs. The spatiotemporal variation of TPH confirms a bell shape. According to the analysis, the TPH varies with latitude, with the highest level reaching up to 17 km in the equatorial region and decreasing gradually to get its lowest value of 8 km at the poles. The global TPH estimated from GNSS RO is very well matched with the TPH estimated from the ECMWF Reanalysis v5 (ERA5) model with a correlation of 0.9997 in 2021. The findings of this study will contribute to a better understanding of TPH variations. As a result, our findings may be helpful in advancing atmospheric modeling and estimating wet delay for GNSS observations.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 2","pages":"Pages 317-331"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global tropopause height determination using GNSS radio occultation\",\"authors\":\"Mohamed Zhran , Ashraf Mousa\",\"doi\":\"10.1016/j.ejrs.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The tropopause layer is a crucial stratum of the earth's atmosphere that attracts more interest from climate and atmospheric researchers. The observables of the global navigation satellite system (GNSS) allow for continuous and long-term research of the atmosphere. The Meteorological Operational Satellite Program (MetOp) mission has a large number of radio occultation (RO) events globally with a high vertical resolution. For investigating the atmosphere, GNSS RO is regarded as a great active remote sensing approach. The present paper investigates the tropopause height (TPH) globally using 5,738,483 GNSS RO measurements of MetOp from 2007 to 2021 to analyze the monthly and yearly variability patterns of TPHs. The spatiotemporal variation of TPH confirms a bell shape. According to the analysis, the TPH varies with latitude, with the highest level reaching up to 17 km in the equatorial region and decreasing gradually to get its lowest value of 8 km at the poles. The global TPH estimated from GNSS RO is very well matched with the TPH estimated from the ECMWF Reanalysis v5 (ERA5) model with a correlation of 0.9997 in 2021. The findings of this study will contribute to a better understanding of TPH variations. As a result, our findings may be helpful in advancing atmospheric modeling and estimating wet delay for GNSS observations.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"26 2\",\"pages\":\"Pages 317-331\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982323000236\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982323000236","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Global tropopause height determination using GNSS radio occultation
The tropopause layer is a crucial stratum of the earth's atmosphere that attracts more interest from climate and atmospheric researchers. The observables of the global navigation satellite system (GNSS) allow for continuous and long-term research of the atmosphere. The Meteorological Operational Satellite Program (MetOp) mission has a large number of radio occultation (RO) events globally with a high vertical resolution. For investigating the atmosphere, GNSS RO is regarded as a great active remote sensing approach. The present paper investigates the tropopause height (TPH) globally using 5,738,483 GNSS RO measurements of MetOp from 2007 to 2021 to analyze the monthly and yearly variability patterns of TPHs. The spatiotemporal variation of TPH confirms a bell shape. According to the analysis, the TPH varies with latitude, with the highest level reaching up to 17 km in the equatorial region and decreasing gradually to get its lowest value of 8 km at the poles. The global TPH estimated from GNSS RO is very well matched with the TPH estimated from the ECMWF Reanalysis v5 (ERA5) model with a correlation of 0.9997 in 2021. The findings of this study will contribute to a better understanding of TPH variations. As a result, our findings may be helpful in advancing atmospheric modeling and estimating wet delay for GNSS observations.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.