利用生物物理线索和生物材料改进遗传模型

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL Current Opinion in Biomedical Engineering Pub Date : 2023-09-09 DOI:10.1016/j.cobme.2023.100502
Thomas G. Molley , Adam J. Engler
{"title":"利用生物物理线索和生物材料改进遗传模型","authors":"Thomas G. Molley ,&nbsp;Adam J. Engler","doi":"10.1016/j.cobme.2023.100502","DOIUrl":null,"url":null,"abstract":"<div><p>With the advent of induced pluripotent stem cells and modern differentiation protocols, many advances in our understanding of disease have been made possible by <em>in vitro</em> disease modeling; in some cases, their use may have supplanted animal models. Yet <em>in vitro</em> models often rely on rigid cell culture substrates that could limit our ability to completely reproduce human disease in a dish. Nascent work, however, suggests that the combination of biomaterials and/or advanced microphysiological systems–which better recapitulate tissue properties–with stem cells expressing disease mimicking genetics, could substantially improve current disease modeling efforts where genetics alone is insufficient. This review will highlight such recent advances as well as review current challenges that the fields must overcome to create more personalized therapeutics in the future.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"28 ","pages":"Article 100502"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using biophysical cues and biomaterials to improve genetic models\",\"authors\":\"Thomas G. Molley ,&nbsp;Adam J. Engler\",\"doi\":\"10.1016/j.cobme.2023.100502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the advent of induced pluripotent stem cells and modern differentiation protocols, many advances in our understanding of disease have been made possible by <em>in vitro</em> disease modeling; in some cases, their use may have supplanted animal models. Yet <em>in vitro</em> models often rely on rigid cell culture substrates that could limit our ability to completely reproduce human disease in a dish. Nascent work, however, suggests that the combination of biomaterials and/or advanced microphysiological systems–which better recapitulate tissue properties–with stem cells expressing disease mimicking genetics, could substantially improve current disease modeling efforts where genetics alone is insufficient. This review will highlight such recent advances as well as review current challenges that the fields must overcome to create more personalized therapeutics in the future.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"28 \",\"pages\":\"Article 100502\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000582\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000582","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着诱导多能干细胞和现代分化方案的出现,通过体外疾病建模,我们对疾病的理解取得了许多进展;在某些情况下,它们的使用可能已经取代了动物模型。然而,体外模型通常依赖于坚硬的细胞培养基质,这可能会限制我们在培养皿中完全复制人类疾病的能力。然而,早期的研究表明,生物材料和/或先进的微生理系统(可以更好地概括组织特性)与表达疾病模拟遗传学的干细胞相结合,可以大大改善目前仅靠遗传学还不够的疾病建模工作。这篇综述将突出这些最近的进展,以及回顾当前的挑战,该领域必须克服,以创造更多的个性化治疗在未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using biophysical cues and biomaterials to improve genetic models

With the advent of induced pluripotent stem cells and modern differentiation protocols, many advances in our understanding of disease have been made possible by in vitro disease modeling; in some cases, their use may have supplanted animal models. Yet in vitro models often rely on rigid cell culture substrates that could limit our ability to completely reproduce human disease in a dish. Nascent work, however, suggests that the combination of biomaterials and/or advanced microphysiological systems–which better recapitulate tissue properties–with stem cells expressing disease mimicking genetics, could substantially improve current disease modeling efforts where genetics alone is insufficient. This review will highlight such recent advances as well as review current challenges that the fields must overcome to create more personalized therapeutics in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
期刊最新文献
Rehabilitation of motor and sensory function using spinal cord stimulation: Recent advances Bioresorbable neural interfaces for bioelectronic medicine Neuromodulation for the treatment of sexual dysfunction: An opportunity for the field Enhancing resilience against adversarial attacks in medical imaging using advanced feature transformation training The prospect of electroceutical intervention and its implementation toward intractable neuromuscular diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1