{"title":"基于深度学习的土壤压实监测:概念验证研究","authors":"Shota Teramoto , Shinichi Ito , Taizo Kobayashi","doi":"10.1016/j.jterra.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic behavior of the vibratory drum of a soil compactor for earthworks is known to be affected by soil stiffness. Real-time monitoring techniques measuring the acceleration of vibratory drums have been widely used for soil compaction quality control; however, their accuracy can be affected by soil type and conditions. To resolve this problem, a novel deep learning-based technique is developed. The method allows the regression estimation of soil stiffness from vibration drum acceleration responses. By expanding the range of applicability and improving accuracy, the proposed method provides a more reliable and robust approach to evaluate soil compaction quality. To train the estimation model, numerous datasets of noise-free waveform data are numerically generated by solving the equations of motion of the mass–spring–damper system of a vibratory roller. To validate the effectiveness of the proposed technique, a field experiment is conducted. A good correlation between the estimated and measured values is demonstrated by the experimental results. The correlation coefficient is 0.790, indicating the high potential of the proposed method as a new real-time monitoring technique for soil compaction quality.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 65-72"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based soil compaction monitoring: A proof-of-concept study\",\"authors\":\"Shota Teramoto , Shinichi Ito , Taizo Kobayashi\",\"doi\":\"10.1016/j.jterra.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic behavior of the vibratory drum of a soil compactor for earthworks is known to be affected by soil stiffness. Real-time monitoring techniques measuring the acceleration of vibratory drums have been widely used for soil compaction quality control; however, their accuracy can be affected by soil type and conditions. To resolve this problem, a novel deep learning-based technique is developed. The method allows the regression estimation of soil stiffness from vibration drum acceleration responses. By expanding the range of applicability and improving accuracy, the proposed method provides a more reliable and robust approach to evaluate soil compaction quality. To train the estimation model, numerous datasets of noise-free waveform data are numerically generated by solving the equations of motion of the mass–spring–damper system of a vibratory roller. To validate the effectiveness of the proposed technique, a field experiment is conducted. A good correlation between the estimated and measured values is demonstrated by the experimental results. The correlation coefficient is 0.790, indicating the high potential of the proposed method as a new real-time monitoring technique for soil compaction quality.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"111 \",\"pages\":\"Pages 65-72\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489823000861\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Deep learning-based soil compaction monitoring: A proof-of-concept study
The dynamic behavior of the vibratory drum of a soil compactor for earthworks is known to be affected by soil stiffness. Real-time monitoring techniques measuring the acceleration of vibratory drums have been widely used for soil compaction quality control; however, their accuracy can be affected by soil type and conditions. To resolve this problem, a novel deep learning-based technique is developed. The method allows the regression estimation of soil stiffness from vibration drum acceleration responses. By expanding the range of applicability and improving accuracy, the proposed method provides a more reliable and robust approach to evaluate soil compaction quality. To train the estimation model, numerous datasets of noise-free waveform data are numerically generated by solving the equations of motion of the mass–spring–damper system of a vibratory roller. To validate the effectiveness of the proposed technique, a field experiment is conducted. A good correlation between the estimated and measured values is demonstrated by the experimental results. The correlation coefficient is 0.790, indicating the high potential of the proposed method as a new real-time monitoring technique for soil compaction quality.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.