用于碰撞感知服装重构的隐式代理参数编码

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-01 DOI:10.1016/j.gmod.2023.101195
Lan Chen , Jie Yang , Hongbo Fu , Xiaoxu Meng , Weikai Chen , Bo Yang , Lin Gao
{"title":"用于碰撞感知服装重构的隐式代理参数编码","authors":"Lan Chen ,&nbsp;Jie Yang ,&nbsp;Hongbo Fu ,&nbsp;Xiaoxu Meng ,&nbsp;Weikai Chen ,&nbsp;Bo Yang ,&nbsp;Lin Gao","doi":"10.1016/j.gmod.2023.101195","DOIUrl":null,"url":null,"abstract":"<div><p>The emerging remote collaboration in a virtual environment calls for quickly generating high-fidelity 3D humans with cloth from a single image. To estimate clothing geometry and topology, parametric models are widely used but often lack details. Alternative approaches based on implicit functions can generate accurate details but are limited to closed surfaces and may not produce physically correct reconstructions, such as collision-free human avatars. To solve these problems, we present <em>ImplicitPCA</em>, a framework for high-fidelity single-view garment reconstruction that bridges the good ends of explicit and implicit representations. The key is a parametric SDF network that closely couples parametric encoding with implicit functions and thus enjoys the fine details brought by implicit reconstruction while maintaining correct topology with open surfaces. We further introduce a collision-aware regression network to ensure the physical correctness of cloth and human. During inference, an iterative routine is applied to an input image with 2D garment landmarks to obtain optimal parameters by aligning the cloth mesh projection with the 2D landmarks and fitting the parametric implicit fields with the reconstructed cloth SDF. The experiments on the public dataset and in-the-wild images demonstrate that our result outperforms the prior works, reconstructing detailed, topology-correct 3D garments while avoiding garment-body collisions.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101195"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ImplicitPCA: Implicitly-proxied parametric encoding for collision-aware garment reconstruction\",\"authors\":\"Lan Chen ,&nbsp;Jie Yang ,&nbsp;Hongbo Fu ,&nbsp;Xiaoxu Meng ,&nbsp;Weikai Chen ,&nbsp;Bo Yang ,&nbsp;Lin Gao\",\"doi\":\"10.1016/j.gmod.2023.101195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emerging remote collaboration in a virtual environment calls for quickly generating high-fidelity 3D humans with cloth from a single image. To estimate clothing geometry and topology, parametric models are widely used but often lack details. Alternative approaches based on implicit functions can generate accurate details but are limited to closed surfaces and may not produce physically correct reconstructions, such as collision-free human avatars. To solve these problems, we present <em>ImplicitPCA</em>, a framework for high-fidelity single-view garment reconstruction that bridges the good ends of explicit and implicit representations. The key is a parametric SDF network that closely couples parametric encoding with implicit functions and thus enjoys the fine details brought by implicit reconstruction while maintaining correct topology with open surfaces. We further introduce a collision-aware regression network to ensure the physical correctness of cloth and human. During inference, an iterative routine is applied to an input image with 2D garment landmarks to obtain optimal parameters by aligning the cloth mesh projection with the 2D landmarks and fitting the parametric implicit fields with the reconstructed cloth SDF. The experiments on the public dataset and in-the-wild images demonstrate that our result outperforms the prior works, reconstructing detailed, topology-correct 3D garments while avoiding garment-body collisions.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101195\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000255\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

虚拟环境中新兴的远程协作要求从单个图像中快速生成高保真的3D人体。为了估计服装的几何结构和拓扑结构,参数模型被广泛使用,但往往缺乏细节。基于隐式函数的替代方法可以生成准确的细节,但仅限于闭合表面,并且可能无法生成物理上正确的重建,例如无碰撞的人类化身。为了解决这些问题,我们提出了ImplicitPCA,这是一个用于高保真单视图服装重建的框架,它连接了显式和隐式表示的良好效果。关键是一个参数SDF网络,它将参数编码与隐式函数紧密耦合,从而在保持具有开放曲面的正确拓扑的同时,享受隐式重构带来的精细细节。我们进一步引入了一个碰撞感知回归网络,以确保布料和人的物理正确性。在推断过程中,迭代程序被应用于具有2D服装标志的输入图像,以通过将布网格投影与2D标志对齐并将参数隐式场与重建的布SDF拟合来获得最佳参数。在公共数据集和野生图像上的实验表明,我们的结果优于先前的工作,重建了详细的、拓扑正确的3D服装,同时避免了服装与身体的碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ImplicitPCA: Implicitly-proxied parametric encoding for collision-aware garment reconstruction

The emerging remote collaboration in a virtual environment calls for quickly generating high-fidelity 3D humans with cloth from a single image. To estimate clothing geometry and topology, parametric models are widely used but often lack details. Alternative approaches based on implicit functions can generate accurate details but are limited to closed surfaces and may not produce physically correct reconstructions, such as collision-free human avatars. To solve these problems, we present ImplicitPCA, a framework for high-fidelity single-view garment reconstruction that bridges the good ends of explicit and implicit representations. The key is a parametric SDF network that closely couples parametric encoding with implicit functions and thus enjoys the fine details brought by implicit reconstruction while maintaining correct topology with open surfaces. We further introduce a collision-aware regression network to ensure the physical correctness of cloth and human. During inference, an iterative routine is applied to an input image with 2D garment landmarks to obtain optimal parameters by aligning the cloth mesh projection with the 2D landmarks and fitting the parametric implicit fields with the reconstructed cloth SDF. The experiments on the public dataset and in-the-wild images demonstrate that our result outperforms the prior works, reconstructing detailed, topology-correct 3D garments while avoiding garment-body collisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1