PU-GAT:点云上采样与图关注网络

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-09-25 DOI:10.1016/j.gmod.2023.101201
Xuan Deng, Cheng Zhang, Jian Shi, Zizhao Wu
{"title":"PU-GAT:点云上采样与图关注网络","authors":"Xuan Deng,&nbsp;Cheng Zhang,&nbsp;Jian Shi,&nbsp;Zizhao Wu","doi":"10.1016/j.gmod.2023.101201","DOIUrl":null,"url":null,"abstract":"<div><p>Point cloud upsampling has been extensively studied, however, the existing approaches suffer from the losing of structural information due to neglect of spatial dependencies between points. In this work, we propose PU-GAT, a novel 3D point cloud upsampling method that leverages graph attention networks to learn structural information over the baselines. Specifically, we first design a local–global feature extraction unit by combining spatial information and position encoding to mine the local spatial inter-dependencies across point features. Then, we construct an up-down-up feature expansion unit, which uses graph attention and GCN to enhance the ability of capturing local structure information. Extensive experiments on synthetic and real data have shown that our method achieves superior performance against previous methods quantitatively and qualitatively.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101201"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PU-GAT: Point cloud upsampling with graph attention network\",\"authors\":\"Xuan Deng,&nbsp;Cheng Zhang,&nbsp;Jian Shi,&nbsp;Zizhao Wu\",\"doi\":\"10.1016/j.gmod.2023.101201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Point cloud upsampling has been extensively studied, however, the existing approaches suffer from the losing of structural information due to neglect of spatial dependencies between points. In this work, we propose PU-GAT, a novel 3D point cloud upsampling method that leverages graph attention networks to learn structural information over the baselines. Specifically, we first design a local–global feature extraction unit by combining spatial information and position encoding to mine the local spatial inter-dependencies across point features. Then, we construct an up-down-up feature expansion unit, which uses graph attention and GCN to enhance the ability of capturing local structure information. Extensive experiments on synthetic and real data have shown that our method achieves superior performance against previous methods quantitatively and qualitatively.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"130 \",\"pages\":\"Article 101201\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000310\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000310","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

点云上采样已经得到了广泛的研究,然而,现有的方法由于忽略了点之间的空间依赖关系而导致结构信息的丢失。在这项工作中,我们提出了一种新颖的三维点云上采样方法PU-GAT,它利用图注意力网络来学习基线上的结构信息。具体来说,我们首先设计了一个局部-全局特征提取单元,结合空间信息和位置编码来挖掘点特征之间的局部空间相互依赖关系。然后,构造了一个上下向上的特征扩展单元,利用图注意和GCN增强了局部结构信息的捕获能力。大量的合成数据和实际数据实验表明,该方法在定量和定性上都优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PU-GAT: Point cloud upsampling with graph attention network

Point cloud upsampling has been extensively studied, however, the existing approaches suffer from the losing of structural information due to neglect of spatial dependencies between points. In this work, we propose PU-GAT, a novel 3D point cloud upsampling method that leverages graph attention networks to learn structural information over the baselines. Specifically, we first design a local–global feature extraction unit by combining spatial information and position encoding to mine the local spatial inter-dependencies across point features. Then, we construct an up-down-up feature expansion unit, which uses graph attention and GCN to enhance the ability of capturing local structure information. Extensive experiments on synthetic and real data have shown that our method achieves superior performance against previous methods quantitatively and qualitatively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
3D data augmentation and dual-branch model for robust face forgery detection Quasi-interpolation projectors for subdivision function spaces Efficient alternating and joint distance minimization methods for adaptive spline surface fitting Discrete variable 3D models in Computer extended Descriptive Geometry (CeDG): Building of polygonal sheet-metal elbows and comparison against CAD Lightweight deep learning method for end-to-end point cloud registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1