Jrender:一个基于Jittor的高效可微分渲染库

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2023-10-18 DOI:10.1016/j.gmod.2023.101202
Hanggao Xin, Chenzhong Xiang, Wenyang Zhou, Dun Liang
{"title":"Jrender:一个基于Jittor的高效可微分渲染库","authors":"Hanggao Xin,&nbsp;Chenzhong Xiang,&nbsp;Wenyang Zhou,&nbsp;Dun Liang","doi":"10.1016/j.gmod.2023.101202","DOIUrl":null,"url":null,"abstract":"<div><p>Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101202"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jrender: An efficient differentiable rendering library based on Jittor\",\"authors\":\"Hanggao Xin,&nbsp;Chenzhong Xiang,&nbsp;Wenyang Zhou,&nbsp;Dun Liang\",\"doi\":\"10.1016/j.gmod.2023.101202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"130 \",\"pages\":\"Article 101202\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000322\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

可微分渲染已经被证明是一个强大的工具,以桥梁2D图像和3D模型。借助可微渲染,计算机视觉和计算机图形学中的任务可以更优雅、更精确地求解。为了解决可微渲染方法实现中的挑战,我们提出了一个基于Jittor的高效模块化可微渲染库Jrender。Jrender支持3D网格的表面渲染和3D体的体渲染。与以前的可微分渲染器相比,Jrender在性能和渲染质量方面都有了显著的改进。由于模块化设计,Jrender可以很容易地支持各种渲染效果,如PBR材质着色、环境遮挡、软阴影、全局照明和亚表面散射,这些在其他可微分渲染库中是不可用的。为了验证我们的库,我们将Jrender集成到3D对象重建和NeRF等应用程序中,这表明我们的实现可以在更高的性能下达到相同的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jrender: An efficient differentiable rendering library based on Jittor

Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1