Hanggao Xin, Chenzhong Xiang, Wenyang Zhou, Dun Liang
{"title":"Jrender:一个基于Jittor的高效可微分渲染库","authors":"Hanggao Xin, Chenzhong Xiang, Wenyang Zhou, Dun Liang","doi":"10.1016/j.gmod.2023.101202","DOIUrl":null,"url":null,"abstract":"<div><p>Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"130 ","pages":"Article 101202"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jrender: An efficient differentiable rendering library based on Jittor\",\"authors\":\"Hanggao Xin, Chenzhong Xiang, Wenyang Zhou, Dun Liang\",\"doi\":\"10.1016/j.gmod.2023.101202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"130 \",\"pages\":\"Article 101202\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000322\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Jrender: An efficient differentiable rendering library based on Jittor
Differentiable rendering has been proven as a powerful tool to bridge 2D images and 3D models. With the aid of differentiable rendering, tasks in computer vision and computer graphics could be solved more elegantly and accurately. To address challenges in the implementations of differentiable rendering methods, we present an efficient and modular differentiable rendering library named Jrender based on Jittor. Jrender supports surface rendering for 3D meshes and volume rendering for 3D volumes. Compared with previous differentiable renderers, Jrender exhibits a significant improvement in both performance and rendering quality. Due to the modular design, various rendering effects such as PBR materials shading, ambient occlusions, soft shadows, global illumination, and subsurface scattering could be easily supported in Jrender, which are not available in other differentiable rendering libraries. To validate our library, we integrate Jrender into applications such as 3D object reconstruction and NeRF, which show that our implementations could achieve the same quality with higher performance.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.