Wei-Hsin Chen , Shu-Cheng Li , Amit Kumar Sharma , Joon Ching Juan , Ayyadurai Saravanakumar
{"title":"优化横流结构的钯合金膜反应器中水煤气移位反应的研究","authors":"Wei-Hsin Chen , Shu-Cheng Li , Amit Kumar Sharma , Joon Ching Juan , Ayyadurai Saravanakumar","doi":"10.1016/j.nexus.2023.100240","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the performance of a high-temperature water gas shift reaction (WGSR) using a Fe-Cr catalyst along with a Pd alloy membrane was simulated by computational fluid dynamics (CFD). The influences of using Pd membranes, catalytic layer thickness ratio (R/R<sub>0</sub>), Reynolds number, and steam-to-CO ratio (S/C) on the reaction were investigated by comparing CO conversion and hydrogen recovery (HR). In the CFD simulation, one-tube and four-tube systems were simulated at 500 °C. This study also compared the performance between tandem and optimized configurations. The results show that the CO conversion can be improved up to 22.9% when the WGSR reactor system uses a Pd membrane compared to the system without a Pd membrane. The system has the best hydrogen recovery performance at S/C = 4 and R/R<sub>0</sub> larger than 1.5. At <em>Re</em>=5, the optimized configuration for CO conversion has better performance when R/R<sub>0</sub> is larger than 1.75. Compared to the tandem configuration, the optimized configuration also shows better performance for HR at every R/R<sub>0</sub>. The results indicate that a Pd membrane and optimized configuration can significantly improve CO conversion and that R/R<sub>0</sub> and S/C optimization is very important for effective reactor performance.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of water gas shift reaction in a Pd-alloy membrane reactor with an optimized crossflow configuration\",\"authors\":\"Wei-Hsin Chen , Shu-Cheng Li , Amit Kumar Sharma , Joon Ching Juan , Ayyadurai Saravanakumar\",\"doi\":\"10.1016/j.nexus.2023.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the performance of a high-temperature water gas shift reaction (WGSR) using a Fe-Cr catalyst along with a Pd alloy membrane was simulated by computational fluid dynamics (CFD). The influences of using Pd membranes, catalytic layer thickness ratio (R/R<sub>0</sub>), Reynolds number, and steam-to-CO ratio (S/C) on the reaction were investigated by comparing CO conversion and hydrogen recovery (HR). In the CFD simulation, one-tube and four-tube systems were simulated at 500 °C. This study also compared the performance between tandem and optimized configurations. The results show that the CO conversion can be improved up to 22.9% when the WGSR reactor system uses a Pd membrane compared to the system without a Pd membrane. The system has the best hydrogen recovery performance at S/C = 4 and R/R<sub>0</sub> larger than 1.5. At <em>Re</em>=5, the optimized configuration for CO conversion has better performance when R/R<sub>0</sub> is larger than 1.75. Compared to the tandem configuration, the optimized configuration also shows better performance for HR at every R/R<sub>0</sub>. The results indicate that a Pd membrane and optimized configuration can significantly improve CO conversion and that R/R<sub>0</sub> and S/C optimization is very important for effective reactor performance.</p></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427123000700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427123000700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An investigation of water gas shift reaction in a Pd-alloy membrane reactor with an optimized crossflow configuration
In this study, the performance of a high-temperature water gas shift reaction (WGSR) using a Fe-Cr catalyst along with a Pd alloy membrane was simulated by computational fluid dynamics (CFD). The influences of using Pd membranes, catalytic layer thickness ratio (R/R0), Reynolds number, and steam-to-CO ratio (S/C) on the reaction were investigated by comparing CO conversion and hydrogen recovery (HR). In the CFD simulation, one-tube and four-tube systems were simulated at 500 °C. This study also compared the performance between tandem and optimized configurations. The results show that the CO conversion can be improved up to 22.9% when the WGSR reactor system uses a Pd membrane compared to the system without a Pd membrane. The system has the best hydrogen recovery performance at S/C = 4 and R/R0 larger than 1.5. At Re=5, the optimized configuration for CO conversion has better performance when R/R0 is larger than 1.75. Compared to the tandem configuration, the optimized configuration also shows better performance for HR at every R/R0. The results indicate that a Pd membrane and optimized configuration can significantly improve CO conversion and that R/R0 and S/C optimization is very important for effective reactor performance.
Energy nexusEnergy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)