Yunliang Qi , Wei Liu , Shang Liu , Wei Wang , Yue Peng , Zhi Wang
{"title":"氨氢燃料内燃机研究进展","authors":"Yunliang Qi , Wei Liu , Shang Liu , Wei Wang , Yue Peng , Zhi Wang","doi":"10.1016/j.etran.2023.100288","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>In the face of the electrification trend in transportation, the internal combustion engine<span> (ICE) is expected to continue playing a vital role in generating electricity for power systems or directly propelling vehicles in certain sectors. However, ICEs are also under significant pressure to achieve carbon neutrality, with the key lying in carbon-free fuels. Ammonia, compared to hydrogen, offers advantages in terms of hydrogen-carrying capacity, storage and transportation convenience, and safety, making it a promising carbon-free fuel for large-scale use in ICEs. Nonetheless, ammonia's combustion inertness poses challenges for its application, requiring efforts to enhance its combustion. Hydrogen, as a carbon-free and highly reactive fuel, serves as a powerful combustion promoter, maximizing the carbon-free effect of ammonia. Furthermore, on-board </span></span>ammonia decomposition can </span>produce hydrogen<span><span>, ensuring a stable hydrogen supply and enabling ammonia-hydrogen synergy combustion while carrying only ammonia. This ammonia-hydrogen synergy combustion, based on on-board hydrogen production<span>, presents a highly promising development direction for ammonia engines. When combined with hybridization, it further enhances the overall energy efficiency of ammonia. The objective of this paper is to review recent advancements in ammonia-hydrogen engines, covering topics such as ignition methods and combustion strategies, fuel supply, pollutants, and after-treatment. Based on this review, a conceptual ammonia-hydrogen engine for hybrid power systems is proposed. This engine ignites the ammonia-hydrogen mixture in the main chamber using hydrogen active jet ignition, achieving spark-assisted compression ignition. Technical measures for efficient </span></span>engine combustion, synergistic utilization of exhaust heat for hydrogen production, and effective after-treatment of NO</span></span><sub>x</sub>, unburned NH<sub>3</sub>, and N<sub>2</sub>O are discussed. At last, some perspectives on the development of ammonia-hydrogen engines are also presented.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"18 ","pages":"Article 100288"},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A review on ammonia-hydrogen fueled internal combustion engines\",\"authors\":\"Yunliang Qi , Wei Liu , Shang Liu , Wei Wang , Yue Peng , Zhi Wang\",\"doi\":\"10.1016/j.etran.2023.100288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>In the face of the electrification trend in transportation, the internal combustion engine<span> (ICE) is expected to continue playing a vital role in generating electricity for power systems or directly propelling vehicles in certain sectors. However, ICEs are also under significant pressure to achieve carbon neutrality, with the key lying in carbon-free fuels. Ammonia, compared to hydrogen, offers advantages in terms of hydrogen-carrying capacity, storage and transportation convenience, and safety, making it a promising carbon-free fuel for large-scale use in ICEs. Nonetheless, ammonia's combustion inertness poses challenges for its application, requiring efforts to enhance its combustion. Hydrogen, as a carbon-free and highly reactive fuel, serves as a powerful combustion promoter, maximizing the carbon-free effect of ammonia. Furthermore, on-board </span></span>ammonia decomposition can </span>produce hydrogen<span><span>, ensuring a stable hydrogen supply and enabling ammonia-hydrogen synergy combustion while carrying only ammonia. This ammonia-hydrogen synergy combustion, based on on-board hydrogen production<span>, presents a highly promising development direction for ammonia engines. When combined with hybridization, it further enhances the overall energy efficiency of ammonia. The objective of this paper is to review recent advancements in ammonia-hydrogen engines, covering topics such as ignition methods and combustion strategies, fuel supply, pollutants, and after-treatment. Based on this review, a conceptual ammonia-hydrogen engine for hybrid power systems is proposed. This engine ignites the ammonia-hydrogen mixture in the main chamber using hydrogen active jet ignition, achieving spark-assisted compression ignition. Technical measures for efficient </span></span>engine combustion, synergistic utilization of exhaust heat for hydrogen production, and effective after-treatment of NO</span></span><sub>x</sub>, unburned NH<sub>3</sub>, and N<sub>2</sub>O are discussed. At last, some perspectives on the development of ammonia-hydrogen engines are also presented.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"18 \",\"pages\":\"Article 100288\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116823000632\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A review on ammonia-hydrogen fueled internal combustion engines
In the face of the electrification trend in transportation, the internal combustion engine (ICE) is expected to continue playing a vital role in generating electricity for power systems or directly propelling vehicles in certain sectors. However, ICEs are also under significant pressure to achieve carbon neutrality, with the key lying in carbon-free fuels. Ammonia, compared to hydrogen, offers advantages in terms of hydrogen-carrying capacity, storage and transportation convenience, and safety, making it a promising carbon-free fuel for large-scale use in ICEs. Nonetheless, ammonia's combustion inertness poses challenges for its application, requiring efforts to enhance its combustion. Hydrogen, as a carbon-free and highly reactive fuel, serves as a powerful combustion promoter, maximizing the carbon-free effect of ammonia. Furthermore, on-board ammonia decomposition can produce hydrogen, ensuring a stable hydrogen supply and enabling ammonia-hydrogen synergy combustion while carrying only ammonia. This ammonia-hydrogen synergy combustion, based on on-board hydrogen production, presents a highly promising development direction for ammonia engines. When combined with hybridization, it further enhances the overall energy efficiency of ammonia. The objective of this paper is to review recent advancements in ammonia-hydrogen engines, covering topics such as ignition methods and combustion strategies, fuel supply, pollutants, and after-treatment. Based on this review, a conceptual ammonia-hydrogen engine for hybrid power systems is proposed. This engine ignites the ammonia-hydrogen mixture in the main chamber using hydrogen active jet ignition, achieving spark-assisted compression ignition. Technical measures for efficient engine combustion, synergistic utilization of exhaust heat for hydrogen production, and effective after-treatment of NOx, unburned NH3, and N2O are discussed. At last, some perspectives on the development of ammonia-hydrogen engines are also presented.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.