Xiuli Zhou , Xiaochuan Xu , Junfeng Zhang , Ling Wang , Defu Wang , Pingping Zhang
{"title":"基于改进随机森林的青贮收获机故障诊断","authors":"Xiuli Zhou , Xiaochuan Xu , Junfeng Zhang , Ling Wang , Defu Wang , Pingping Zhang","doi":"10.1016/j.inpa.2022.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to investigate the effectiveness of a multi-parameter intelligent fault diagnosis method based on a modified random forest algorithm (RFNB algorithm), so as to reduce the impact of blockage fault on the operation of a silage harvester, thus providing a reference for the intelligent control. In brief, the forward speed, cutting speed, engine speed and engine load were selected as the input variables. Then, a random forest (RF) was used to construct a naive Bayes classifier for each node of the decision tree, and finally the RFNB algorithm constituted based on the naive Bayes tree (NBTree). The results revealed that by improving the classification accuracy of a single decision tree, the fault diagnosis accuracy of the entire RF was improved. When the sample data were consistent, the accuracy of the RFNB algorithm was 97.9%, while that of the RF algorithm was only 93.27%. Besides, the performance of RFNB classifiers was significantly better than that of RF classifiers. In conclusion, the RFNB model can accurately identify the fault status of the silage harvester with its good robustness, which provides a new idea for the fault monitoring and early warning of large agricultural rotating machinery in the future.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 301-311"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fault diagnosis of silage harvester based on a modified random forest\",\"authors\":\"Xiuli Zhou , Xiaochuan Xu , Junfeng Zhang , Ling Wang , Defu Wang , Pingping Zhang\",\"doi\":\"10.1016/j.inpa.2022.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study is to investigate the effectiveness of a multi-parameter intelligent fault diagnosis method based on a modified random forest algorithm (RFNB algorithm), so as to reduce the impact of blockage fault on the operation of a silage harvester, thus providing a reference for the intelligent control. In brief, the forward speed, cutting speed, engine speed and engine load were selected as the input variables. Then, a random forest (RF) was used to construct a naive Bayes classifier for each node of the decision tree, and finally the RFNB algorithm constituted based on the naive Bayes tree (NBTree). The results revealed that by improving the classification accuracy of a single decision tree, the fault diagnosis accuracy of the entire RF was improved. When the sample data were consistent, the accuracy of the RFNB algorithm was 97.9%, while that of the RF algorithm was only 93.27%. Besides, the performance of RFNB classifiers was significantly better than that of RF classifiers. In conclusion, the RFNB model can accurately identify the fault status of the silage harvester with its good robustness, which provides a new idea for the fault monitoring and early warning of large agricultural rotating machinery in the future.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 3\",\"pages\":\"Pages 301-311\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317322000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fault diagnosis of silage harvester based on a modified random forest
The objective of this study is to investigate the effectiveness of a multi-parameter intelligent fault diagnosis method based on a modified random forest algorithm (RFNB algorithm), so as to reduce the impact of blockage fault on the operation of a silage harvester, thus providing a reference for the intelligent control. In brief, the forward speed, cutting speed, engine speed and engine load were selected as the input variables. Then, a random forest (RF) was used to construct a naive Bayes classifier for each node of the decision tree, and finally the RFNB algorithm constituted based on the naive Bayes tree (NBTree). The results revealed that by improving the classification accuracy of a single decision tree, the fault diagnosis accuracy of the entire RF was improved. When the sample data were consistent, the accuracy of the RFNB algorithm was 97.9%, while that of the RF algorithm was only 93.27%. Besides, the performance of RFNB classifiers was significantly better than that of RF classifiers. In conclusion, the RFNB model can accurately identify the fault status of the silage harvester with its good robustness, which provides a new idea for the fault monitoring and early warning of large agricultural rotating machinery in the future.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining