超声定位显微镜脉冲性检索

Myrthe Wiersma;Baptiste Heiles;Dylan Kalisvaart;David Maresca;Carlas S. Smith
{"title":"超声定位显微镜脉冲性检索","authors":"Myrthe Wiersma;Baptiste Heiles;Dylan Kalisvaart;David Maresca;Carlas S. Smith","doi":"10.1109/OJUFFC.2022.3221354","DOIUrl":null,"url":null,"abstract":"Ultrasound localization microscopy (ULM) is a vascular imaging method that provides a 10-fold improvement in resolution compared to ultrasound Doppler imaging. Because typical ULM acquisitions accumulate large numbers of synthetic microbubble (MB) trajectories over hundreds of cardiac cycles, transient hemodynamic variations such as pulsatility get averaged out. Here we introduce two independent processing methods to retrieve pulsatile flow characteristics from MB trajectories sampled at kilohertz frame rates and demonstrate their potential on a simulated dataset. The first approach follows a Lagrangian description of the flow. We filter the MB trajectories to eliminate ULM localization grid artifacts and successfully recover the pulsatility fraction <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {f}}$ </tex-math></inline-formula> with a root mean square error (RMSE) of 3.3%. Our second approach follows a Eulerian description of the flow. It relies on the accumulation of MB velocity estimates as observed from a stationary observer. We show that pulsatile flow gives rise to a bimodal velocity distribution with peaks indicating the maximum and minimum velocities of the cardiac cycle. In this second method, we recovered the pulsatility fraction <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {f}}$ </tex-math></inline-formula> by measuring the location of these distribution peaks with a RMSE of 5.2%. We evaluated the impact of the MB localization precision <inline-formula> <tex-math notation=\"LaTeX\">$\\sigma $ </tex-math></inline-formula> on our ability to retrieve the bimodal signature of a pulsatile flow. Together, our results demonstrate that pulsatility can be retrieved from ULM acquisitions at kilohertz frame rate and that the estimation of the pulsatility fraction improves with localization precision.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"283-298"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/9674185/09954170.pdf","citationCount":"3","resultStr":"{\"title\":\"Retrieving Pulsatility in Ultrasound Localization Microscopy\",\"authors\":\"Myrthe Wiersma;Baptiste Heiles;Dylan Kalisvaart;David Maresca;Carlas S. Smith\",\"doi\":\"10.1109/OJUFFC.2022.3221354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound localization microscopy (ULM) is a vascular imaging method that provides a 10-fold improvement in resolution compared to ultrasound Doppler imaging. Because typical ULM acquisitions accumulate large numbers of synthetic microbubble (MB) trajectories over hundreds of cardiac cycles, transient hemodynamic variations such as pulsatility get averaged out. Here we introduce two independent processing methods to retrieve pulsatile flow characteristics from MB trajectories sampled at kilohertz frame rates and demonstrate their potential on a simulated dataset. The first approach follows a Lagrangian description of the flow. We filter the MB trajectories to eliminate ULM localization grid artifacts and successfully recover the pulsatility fraction <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {f}}$ </tex-math></inline-formula> with a root mean square error (RMSE) of 3.3%. Our second approach follows a Eulerian description of the flow. It relies on the accumulation of MB velocity estimates as observed from a stationary observer. We show that pulsatile flow gives rise to a bimodal velocity distribution with peaks indicating the maximum and minimum velocities of the cardiac cycle. In this second method, we recovered the pulsatility fraction <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {f}}$ </tex-math></inline-formula> by measuring the location of these distribution peaks with a RMSE of 5.2%. We evaluated the impact of the MB localization precision <inline-formula> <tex-math notation=\\\"LaTeX\\\">$\\\\sigma $ </tex-math></inline-formula> on our ability to retrieve the bimodal signature of a pulsatile flow. Together, our results demonstrate that pulsatility can be retrieved from ULM acquisitions at kilohertz frame rate and that the estimation of the pulsatility fraction improves with localization precision.\",\"PeriodicalId\":73301,\"journal\":{\"name\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"2 \",\"pages\":\"283-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9292640/9674185/09954170.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9954170/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9954170/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

超声定位显微镜(ULM)是一种血管成像方法,与超声多普勒成像相比,其分辨率提高了10倍。由于典型的ULM采集在数百个心脏周期中积累了大量的合成微泡(MB)轨迹,因此瞬态血流动力学变化(如脉搏)被平均出来。在这里,我们介绍了两种独立的处理方法,从以千赫兹帧率采样的MB轨迹中检索脉动流特性,并在模拟数据集上展示了它们的潜力。第一种方法遵循流的拉格朗日描述。我们对MB轨迹进行了过滤,以消除ULM定位网格伪像,并成功地恢复了脉动分数$P_{\ mathm {f}}$,均方根误差(RMSE)为3.3%。我们的第二种方法遵循流的欧拉描述。它依赖于从静止观测者观测到的MB速度估计的累积。我们表明,脉动流产生双峰速度分布,峰值表明心脏周期的最大和最小速度。在第二种方法中,我们通过测量这些分布峰的位置恢复了脉动分数$P_{\ mathm {f}}$, RMSE为5.2%。我们评估了MB定位精度$\sigma $对我们检索脉动流双峰特征的能力的影响。总之,我们的研究结果表明,脉动性可以从千赫兹帧率的ULM采集中检索到,并且脉动性分数的估计随着定位精度的提高而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieving Pulsatility in Ultrasound Localization Microscopy
Ultrasound localization microscopy (ULM) is a vascular imaging method that provides a 10-fold improvement in resolution compared to ultrasound Doppler imaging. Because typical ULM acquisitions accumulate large numbers of synthetic microbubble (MB) trajectories over hundreds of cardiac cycles, transient hemodynamic variations such as pulsatility get averaged out. Here we introduce two independent processing methods to retrieve pulsatile flow characteristics from MB trajectories sampled at kilohertz frame rates and demonstrate their potential on a simulated dataset. The first approach follows a Lagrangian description of the flow. We filter the MB trajectories to eliminate ULM localization grid artifacts and successfully recover the pulsatility fraction $P_{\mathrm {f}}$ with a root mean square error (RMSE) of 3.3%. Our second approach follows a Eulerian description of the flow. It relies on the accumulation of MB velocity estimates as observed from a stationary observer. We show that pulsatile flow gives rise to a bimodal velocity distribution with peaks indicating the maximum and minimum velocities of the cardiac cycle. In this second method, we recovered the pulsatility fraction $P_{\mathrm {f}}$ by measuring the location of these distribution peaks with a RMSE of 5.2%. We evaluated the impact of the MB localization precision $\sigma $ on our ability to retrieve the bimodal signature of a pulsatile flow. Together, our results demonstrate that pulsatility can be retrieved from ULM acquisitions at kilohertz frame rate and that the estimation of the pulsatility fraction improves with localization precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Demonstration of Pulse-Echo Imaging With a Long Monolithic Flexible CMUT Array The 3D Estimation of Mechanical Wave Velocities in the Heart: Methods and Insights Direct Digital Simultaneous Phase-Amplitude Noise and Allan Deviation Measurement System Rochelle Salt Revisited for Eco-Designed Ultrasonic Transducers 3-D Object Reconstruction From Outdoor Ultrasonic Image and Variation Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1