{"title":"基于脑浮点数和稀疏度感知的片上全连接神经网络训练硬件加速器","authors":"Tsung-Han Tsai;Ding-Bang Lin","doi":"10.1109/OJCAS.2023.3245061","DOIUrl":null,"url":null,"abstract":"In recent years, deep neural networks (DNNs) have brought revolutionary progress in various fields with the advent of technology. It is widely used in image pre-processing, image enhancement technology, face recognition, voice recognition, and other applications, gradually replacing traditional algorithms. It shows that the rise of neural networks has led to the reform of artificial intelligence. Since neural network algorithms are computationally intensive, they require GPUs or accelerated hardware for real-time computation. However, the high cost and high power consumption of GPUs result in low energy efficiency. It recently led to much research on accelerated digital circuit hardware design for deep neural networks. In this paper, we propose an efficient and flexible neural network training processor for fully connected layers. Our proposed training processor features low power consumption, high throughput, and high energy efficiency. It uses the sparsity of neuron activations to reduce the number of memory accesses and memory space to achieve an efficient training accelerator. The proposed processor uses a novel reconfigurable computing architecture to maintain high performance when operating Forward Propagation and Backward Propagation. The processor is implemented in Xilinx Zynq UltraSacle+MPSoC ZCU104 FPGA, with an operating frequency of 200MHz and power consumption of 6.444W, and can achieve 102.43 GOPS.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10051716.pdf","citationCount":"4","resultStr":"{\"title\":\"An On-Chip Fully Connected Neural Network Training Hardware Accelerator Based on Brain Float Point and Sparsity Awareness\",\"authors\":\"Tsung-Han Tsai;Ding-Bang Lin\",\"doi\":\"10.1109/OJCAS.2023.3245061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep neural networks (DNNs) have brought revolutionary progress in various fields with the advent of technology. It is widely used in image pre-processing, image enhancement technology, face recognition, voice recognition, and other applications, gradually replacing traditional algorithms. It shows that the rise of neural networks has led to the reform of artificial intelligence. Since neural network algorithms are computationally intensive, they require GPUs or accelerated hardware for real-time computation. However, the high cost and high power consumption of GPUs result in low energy efficiency. It recently led to much research on accelerated digital circuit hardware design for deep neural networks. In this paper, we propose an efficient and flexible neural network training processor for fully connected layers. Our proposed training processor features low power consumption, high throughput, and high energy efficiency. It uses the sparsity of neuron activations to reduce the number of memory accesses and memory space to achieve an efficient training accelerator. The proposed processor uses a novel reconfigurable computing architecture to maintain high performance when operating Forward Propagation and Backward Propagation. The processor is implemented in Xilinx Zynq UltraSacle+MPSoC ZCU104 FPGA, with an operating frequency of 200MHz and power consumption of 6.444W, and can achieve 102.43 GOPS.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784029/10019301/10051716.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10051716/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10051716/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An On-Chip Fully Connected Neural Network Training Hardware Accelerator Based on Brain Float Point and Sparsity Awareness
In recent years, deep neural networks (DNNs) have brought revolutionary progress in various fields with the advent of technology. It is widely used in image pre-processing, image enhancement technology, face recognition, voice recognition, and other applications, gradually replacing traditional algorithms. It shows that the rise of neural networks has led to the reform of artificial intelligence. Since neural network algorithms are computationally intensive, they require GPUs or accelerated hardware for real-time computation. However, the high cost and high power consumption of GPUs result in low energy efficiency. It recently led to much research on accelerated digital circuit hardware design for deep neural networks. In this paper, we propose an efficient and flexible neural network training processor for fully connected layers. Our proposed training processor features low power consumption, high throughput, and high energy efficiency. It uses the sparsity of neuron activations to reduce the number of memory accesses and memory space to achieve an efficient training accelerator. The proposed processor uses a novel reconfigurable computing architecture to maintain high performance when operating Forward Propagation and Backward Propagation. The processor is implemented in Xilinx Zynq UltraSacle+MPSoC ZCU104 FPGA, with an operating frequency of 200MHz and power consumption of 6.444W, and can achieve 102.43 GOPS.