HISS:一个使用后退视界优化的行人轨迹规划框架

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2023-06-02 DOI:10.1109/OJITS.2023.3282237
Saumya Gupta;Mohamed H. Zaki;Adan Vela
{"title":"HISS:一个使用后退视界优化的行人轨迹规划框架","authors":"Saumya Gupta;Mohamed H. Zaki;Adan Vela","doi":"10.1109/OJITS.2023.3282237","DOIUrl":null,"url":null,"abstract":"The paper proposes a generative pedestrian trajectory modeling framework named HISS - Human Interactions in Shared Space. The trajectory modeling framework is based on a receding horizon optimization approach utilizing pedestrian behavior and interactions that seeks to capture pedestrian trajectory planning and execution. The benefit of the proposed dynamic optimization trajectory generation approach is that it requires minimal calibration data under a variety of traffic scenarios. In this paper, we formalize several pedestrian-pedestrian interaction scenarios and implement trajectories’ conflict avoidance through mixed integer linear programming (MILP). We validate the proposed framework on two benchmark datasets - DUT and TrajNet++. The paper shows that when the framework’s parameters are tuned to certain initial conditions and pedestrian behavior and interaction rules, the framework generates pedestrian trajectories similar to those observable in real-world scenarios, justifying the framework’s capability to provide explanations and solutions to various traffic situations. This feature makes the proposed framework useful for modelers and urban city planners in making policy decisions.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"456-470"},"PeriodicalIF":4.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784355/9999144/10143376.pdf","citationCount":"0","resultStr":"{\"title\":\"HISS: A Pedestrian Trajectory Planning Framework Using Receding Horizon Optimization\",\"authors\":\"Saumya Gupta;Mohamed H. Zaki;Adan Vela\",\"doi\":\"10.1109/OJITS.2023.3282237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a generative pedestrian trajectory modeling framework named HISS - Human Interactions in Shared Space. The trajectory modeling framework is based on a receding horizon optimization approach utilizing pedestrian behavior and interactions that seeks to capture pedestrian trajectory planning and execution. The benefit of the proposed dynamic optimization trajectory generation approach is that it requires minimal calibration data under a variety of traffic scenarios. In this paper, we formalize several pedestrian-pedestrian interaction scenarios and implement trajectories’ conflict avoidance through mixed integer linear programming (MILP). We validate the proposed framework on two benchmark datasets - DUT and TrajNet++. The paper shows that when the framework’s parameters are tuned to certain initial conditions and pedestrian behavior and interaction rules, the framework generates pedestrian trajectories similar to those observable in real-world scenarios, justifying the framework’s capability to provide explanations and solutions to various traffic situations. This feature makes the proposed framework useful for modelers and urban city planners in making policy decisions.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"4 \",\"pages\":\"456-470\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784355/9999144/10143376.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10143376/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10143376/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种生成式行人轨迹建模框架——HISS—共享空间中的人类互动。轨迹建模框架基于后退地平线优化方法,利用行人行为和相互作用,寻求捕捉行人轨迹规划和执行。所提出的动态优化轨迹生成方法的优点是在各种交通场景下需要最少的校准数据。在本文中,我们形式化了几种行人-行人交互场景,并通过混合整数线性规划(MILP)实现了轨迹的冲突避免。我们在两个基准数据集- DUT和TrajNet++上验证了所提出的框架。本文表明,当框架的参数被调整为特定的初始条件和行人行为和交互规则时,框架生成的行人轨迹与现实世界中可观察到的轨迹相似,证明了框架能够为各种交通情况提供解释和解决方案。这一特征使得所提出的框架对建模者和城市规划者在制定政策决策时非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HISS: A Pedestrian Trajectory Planning Framework Using Receding Horizon Optimization
The paper proposes a generative pedestrian trajectory modeling framework named HISS - Human Interactions in Shared Space. The trajectory modeling framework is based on a receding horizon optimization approach utilizing pedestrian behavior and interactions that seeks to capture pedestrian trajectory planning and execution. The benefit of the proposed dynamic optimization trajectory generation approach is that it requires minimal calibration data under a variety of traffic scenarios. In this paper, we formalize several pedestrian-pedestrian interaction scenarios and implement trajectories’ conflict avoidance through mixed integer linear programming (MILP). We validate the proposed framework on two benchmark datasets - DUT and TrajNet++. The paper shows that when the framework’s parameters are tuned to certain initial conditions and pedestrian behavior and interaction rules, the framework generates pedestrian trajectories similar to those observable in real-world scenarios, justifying the framework’s capability to provide explanations and solutions to various traffic situations. This feature makes the proposed framework useful for modelers and urban city planners in making policy decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Predictor-Based CACC Design for Heterogeneous Vehicles With Distinct Input Delays NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative Perception Control Allocation Approach Using Differential Steering to Compensate for Steering Actuator Failure Path Planning Optimization of Smart Vehicle With Fast Converging Distance-Dependent PSO Algorithm An Extensible Python Open-Source Simulation Platform for Developing and Benchmarking Bus Holding Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1