{"title":"组织特性变化引起的比吸收率变异性","authors":"Khadijeh Masumnia-Bisheh;Cynthia Furse","doi":"10.1109/JMMCT.2022.3216642","DOIUrl":null,"url":null,"abstract":"This study evaluates the variance of specific absorption rate (SAR) due to expected variance in the dielectric properties of tissues in a 3D anatomical human head model exposed to a half-wave dipole antenna at 835 and 1900 MHz. Stochastic finite difference time domain (S-FDTD) is applied to calculate variations in the local SAR, and the 1- and 10-gram averaged SAR values. These are also compared at 835 MHz to variations found from Monte Carlo FDTD. It is found that for both frequencies dielectric property variance results in a variance of peak 1- or 10-gram SAR of approximately 30% to 55% of the mean SAR, depending on the frequency. These results show that to reach 95% confidence with the calculated SAR values for evaluating exposure guidelines, statistical variations in tissue electrical properties must be taken into account.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"7 ","pages":"304-311"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variability in Specific Absorption Rate From Variation in Tissue Properties\",\"authors\":\"Khadijeh Masumnia-Bisheh;Cynthia Furse\",\"doi\":\"10.1109/JMMCT.2022.3216642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the variance of specific absorption rate (SAR) due to expected variance in the dielectric properties of tissues in a 3D anatomical human head model exposed to a half-wave dipole antenna at 835 and 1900 MHz. Stochastic finite difference time domain (S-FDTD) is applied to calculate variations in the local SAR, and the 1- and 10-gram averaged SAR values. These are also compared at 835 MHz to variations found from Monte Carlo FDTD. It is found that for both frequencies dielectric property variance results in a variance of peak 1- or 10-gram SAR of approximately 30% to 55% of the mean SAR, depending on the frequency. These results show that to reach 95% confidence with the calculated SAR values for evaluating exposure guidelines, statistical variations in tissue electrical properties must be taken into account.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"7 \",\"pages\":\"304-311\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9927358/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9927358/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Variability in Specific Absorption Rate From Variation in Tissue Properties
This study evaluates the variance of specific absorption rate (SAR) due to expected variance in the dielectric properties of tissues in a 3D anatomical human head model exposed to a half-wave dipole antenna at 835 and 1900 MHz. Stochastic finite difference time domain (S-FDTD) is applied to calculate variations in the local SAR, and the 1- and 10-gram averaged SAR values. These are also compared at 835 MHz to variations found from Monte Carlo FDTD. It is found that for both frequencies dielectric property variance results in a variance of peak 1- or 10-gram SAR of approximately 30% to 55% of the mean SAR, depending on the frequency. These results show that to reach 95% confidence with the calculated SAR values for evaluating exposure guidelines, statistical variations in tissue electrical properties must be taken into account.