Nicholas M. Schneider, Jeung Hun Park, Michael M. Norton, Frances M. Ross, Haim H. Bau
{"title":"在原位电子显微镜中对不断变化的界面进行自动分析","authors":"Nicholas M. Schneider, Jeung Hun Park, Michael M. Norton, Frances M. Ross, Haim H. Bau","doi":"10.1186/s40679-016-0016-z","DOIUrl":null,"url":null,"abstract":"<p>In situ electron microscopy allows one to monitor dynamical processes at high spatial and temporal resolution. This produces large quantities of data, and hence automated image processing algorithms are needed to extract useful quantitative measures of the observed phenomena. In this work, we outline an image processing workflow for the analysis of evolving interfaces imaged during liquid cell electron microscopy. As examples, we show metal electrodeposition at electrode surfaces; beam-induced nanocrystal formation and dissolution; and beam-induced bubble nucleation, growth, and migration. These experiments are used to demonstrate a fully automated workflow for the extraction of, among other things, interface position, roughness, lateral wavelength, local normal velocity, and the projected area of the evolving phase as functions of time. The relevant algorithms have been implemented in Mathematica and are available online.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"2 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2016-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-016-0016-z","citationCount":"14","resultStr":"{\"title\":\"Automated analysis of evolving interfaces during in situ electron microscopy\",\"authors\":\"Nicholas M. Schneider, Jeung Hun Park, Michael M. Norton, Frances M. Ross, Haim H. Bau\",\"doi\":\"10.1186/s40679-016-0016-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In situ electron microscopy allows one to monitor dynamical processes at high spatial and temporal resolution. This produces large quantities of data, and hence automated image processing algorithms are needed to extract useful quantitative measures of the observed phenomena. In this work, we outline an image processing workflow for the analysis of evolving interfaces imaged during liquid cell electron microscopy. As examples, we show metal electrodeposition at electrode surfaces; beam-induced nanocrystal formation and dissolution; and beam-induced bubble nucleation, growth, and migration. These experiments are used to demonstrate a fully automated workflow for the extraction of, among other things, interface position, roughness, lateral wavelength, local normal velocity, and the projected area of the evolving phase as functions of time. The relevant algorithms have been implemented in Mathematica and are available online.</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2016-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-016-0016-z\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-016-0016-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-016-0016-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Automated analysis of evolving interfaces during in situ electron microscopy
In situ electron microscopy allows one to monitor dynamical processes at high spatial and temporal resolution. This produces large quantities of data, and hence automated image processing algorithms are needed to extract useful quantitative measures of the observed phenomena. In this work, we outline an image processing workflow for the analysis of evolving interfaces imaged during liquid cell electron microscopy. As examples, we show metal electrodeposition at electrode surfaces; beam-induced nanocrystal formation and dissolution; and beam-induced bubble nucleation, growth, and migration. These experiments are used to demonstrate a fully automated workflow for the extraction of, among other things, interface position, roughness, lateral wavelength, local normal velocity, and the projected area of the evolving phase as functions of time. The relevant algorithms have been implemented in Mathematica and are available online.