Ubaidullah Yashkun, Khairy Zaimi, Suliadi Firdaus Sufahani, Mohamed R. Eid, Mohammad Ferdows
{"title":"纳米流体在吸力、磁场和热辐射作用下通过拉伸/收缩薄片的多孔介质的流动和传热","authors":"Ubaidullah Yashkun, Khairy Zaimi, Suliadi Firdaus Sufahani, Mohamed R. Eid, Mohammad Ferdows","doi":"10.1007/s11766-023-4150-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation. The governing partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) using the similarity transformation. The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software. It was found that dual solutions exist for the shrinking parameter values up to a certain range. The numerical results obtained are compared, and the comparison showed a good agreement with the existing results in the literature. The governing parameters’ effect on the velocity, temperature and nanoparticle fraction fields as well as the skin friction coefficient, the local Nusselt number and the Sherwood number are represented graphically and analyzed. The variation of the velocity, temperature and concentration increase with the increase in the suction and magnetic field parameters. It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction, magnetic field and thermal radiation\",\"authors\":\"Ubaidullah Yashkun, Khairy Zaimi, Suliadi Firdaus Sufahani, Mohamed R. Eid, Mohammad Ferdows\",\"doi\":\"10.1007/s11766-023-4150-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation. The governing partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) using the similarity transformation. The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software. It was found that dual solutions exist for the shrinking parameter values up to a certain range. The numerical results obtained are compared, and the comparison showed a good agreement with the existing results in the literature. The governing parameters’ effect on the velocity, temperature and nanoparticle fraction fields as well as the skin friction coefficient, the local Nusselt number and the Sherwood number are represented graphically and analyzed. The variation of the velocity, temperature and concentration increase with the increase in the suction and magnetic field parameters. It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.</p></div>\",\"PeriodicalId\":67336,\"journal\":{\"name\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-023-4150-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-023-4150-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Flow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction, magnetic field and thermal radiation
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation. The governing partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) using the similarity transformation. The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software. It was found that dual solutions exist for the shrinking parameter values up to a certain range. The numerical results obtained are compared, and the comparison showed a good agreement with the existing results in the literature. The governing parameters’ effect on the velocity, temperature and nanoparticle fraction fields as well as the skin friction coefficient, the local Nusselt number and the Sherwood number are represented graphically and analyzed. The variation of the velocity, temperature and concentration increase with the increase in the suction and magnetic field parameters. It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.