S. E. Sokolov, E. A. Grushevenko, V. V. Volkov, I. L. Borisov, S. Yu. Markova, M. G. Shalygin, A. V. Volkov
{"title":"基于聚十二烷基甲基硅氧烷的复合膜用于烃类混合物的低温分离","authors":"S. E. Sokolov, E. A. Grushevenko, V. V. Volkov, I. L. Borisov, S. Yu. Markova, M. G. Shalygin, A. V. Volkov","doi":"10.1134/S2517751622060099","DOIUrl":null,"url":null,"abstract":"<p>The permeability of <i>n</i>-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity <span>\\({{\\alpha }_{{{{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} \\mathord{\\left/ {\\vphantom {{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}} \\right. \\kern-0em} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}}}}\\)</span> increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity α<sup>S</sup> of these polymers. Thus, the values of <span>\\(\\alpha _{{{{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} \\mathord{\\left/ {\\vphantom {{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}} \\right. \\kern-0em} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}}}^{{\\text{S}}}\\)</span> for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C<sub>4</sub>H<sub>10</sub> (35 vol %)/CH<sub>4</sub> mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 6","pages":"377 - 384"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622060099.pdf","citationCount":"2","resultStr":"{\"title\":\"A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures\",\"authors\":\"S. E. Sokolov, E. A. Grushevenko, V. V. Volkov, I. L. Borisov, S. Yu. Markova, M. G. Shalygin, A. V. Volkov\",\"doi\":\"10.1134/S2517751622060099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The permeability of <i>n</i>-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity <span>\\\\({{\\\\alpha }_{{{{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} \\\\mathord{\\\\left/ {\\\\vphantom {{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}} \\\\right. \\\\kern-0em} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}}}}\\\\)</span> increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity α<sup>S</sup> of these polymers. Thus, the values of <span>\\\\(\\\\alpha _{{{{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} \\\\mathord{\\\\left/ {\\\\vphantom {{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}} \\\\right. \\\\kern-0em} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}}}^{{\\\\text{S}}}\\\\)</span> for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C<sub>4</sub>H<sub>10</sub> (35 vol %)/CH<sub>4</sub> mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 6\",\"pages\":\"377 - 384\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S2517751622060099.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622060099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622060099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
摘要
本文首次研究了PDecMS/MFFK复合膜中正丁烷和甲烷及其混合物在低温至0℃下的渗透性。SEM数据显示,PDecMS的选择层厚度为5 μm。结果表明,从60℃到0℃,丁烷的渗透系数和理想丁烷/甲烷选择性\({{\alpha }_{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}}\)随温度的降低而增大。因此,在0℃时,丁烷的渗透系数为11 400 Barrer。需要强调的是,PDecMS/MFFK在0°C下的理想丁烷/甲烷选择性为60,比MDK和PDMS膜的相似值(分别为27和32)高两倍。这首先与这些聚合物的吸附选择性αS值的不同有关。因此,根据吸附焓估计,PDecMS和PDMS在0℃时的\(\alpha _{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}^{{\text{S}}}\)值分别为170和95。此外,甲烷在PDecMS、PDMS和MDK中扩散活化能的差异,使得PDecMS的丁烷/甲烷选择性在降低测量温度的情况下比PDMS和MDK有更大的提高。在C4H10(35卷)的情况下 %)/CH4 mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.
A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures
The permeability of n-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity \({{\alpha }_{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}}\) increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity αS of these polymers. Thus, the values of \(\alpha _{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}^{{\text{S}}}\) for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C4H10 (35 vol %)/CH4 mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.