基于细菌觅食优化的心电信号自适应伪影消除

Agya Ram Verma, Yashvir Singh
{"title":"基于细菌觅食优化的心电信号自适应伪影消除","authors":"Agya Ram Verma,&nbsp;Yashvir Singh","doi":"10.1007/s41133-019-0014-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the design of adaptive artifact canceler (AAC) filter using bacteria foraging optimization (BFO) algorithm is presented. The performance of proposed AAC filter is tested on a corrupted ECG signal. Based on simulation results, it is observed that the AAC filter designed with BFO technique achieves significant improvement in fidelity parameters such as SNR, NRMSE, and NRME when compared with other reported algorithms in the literature. AAC filter based on BFO technique provides 6 dB improvement in output SNR, 85% reduction in NRMSE, and 90% lower NRME as compared to recently reported AAC filter based on ABC-SF algorithm. Further, AAC filter using BFO technique enhances the coherence between pure and reconstructed ECG signals.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-019-0014-5","citationCount":"2","resultStr":"{\"title\":\"Adaptive Artifact Cancelation Based on Bacteria Foraging Optimization for ECG Signal\",\"authors\":\"Agya Ram Verma,&nbsp;Yashvir Singh\",\"doi\":\"10.1007/s41133-019-0014-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the design of adaptive artifact canceler (AAC) filter using bacteria foraging optimization (BFO) algorithm is presented. The performance of proposed AAC filter is tested on a corrupted ECG signal. Based on simulation results, it is observed that the AAC filter designed with BFO technique achieves significant improvement in fidelity parameters such as SNR, NRMSE, and NRME when compared with other reported algorithms in the literature. AAC filter based on BFO technique provides 6 dB improvement in output SNR, 85% reduction in NRMSE, and 90% lower NRME as compared to recently reported AAC filter based on ABC-SF algorithm. Further, AAC filter using BFO technique enhances the coherence between pure and reconstructed ECG signals.</p></div>\",\"PeriodicalId\":100147,\"journal\":{\"name\":\"Augmented Human Research\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41133-019-0014-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Augmented Human Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41133-019-0014-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-019-0014-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用细菌觅食优化(BFO)算法设计自适应伪影消除器(AAC)滤波器的方法。在损坏的心电信号上测试了所提出的AAC滤波器的性能。基于仿真结果,与文献中报道的其他算法相比,采用BFO技术设计的AAC滤波器在信噪比、NRMSE和NRME等保真度参数方面取得了显著提高。与最近报道的基于ABC-SF算法的AAC滤波器相比,基于BFO技术的AAC过滤器在输出SNR方面提供了6dB的改善,在NRMSE方面降低了85%,并且在NRME方面降低了90%。此外,使用BFO技术的AAC滤波器增强了纯ECG信号和重构ECG信号之间的相干性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Artifact Cancelation Based on Bacteria Foraging Optimization for ECG Signal

In this paper, the design of adaptive artifact canceler (AAC) filter using bacteria foraging optimization (BFO) algorithm is presented. The performance of proposed AAC filter is tested on a corrupted ECG signal. Based on simulation results, it is observed that the AAC filter designed with BFO technique achieves significant improvement in fidelity parameters such as SNR, NRMSE, and NRME when compared with other reported algorithms in the literature. AAC filter based on BFO technique provides 6 dB improvement in output SNR, 85% reduction in NRMSE, and 90% lower NRME as compared to recently reported AAC filter based on ABC-SF algorithm. Further, AAC filter using BFO technique enhances the coherence between pure and reconstructed ECG signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haptic Gamer Suit for Enhancing VR Games Experience Retraction Note: Application on Virtual Reality for Enhanced Education Learning, Military Training and Sports The Impact of Transferring Embodiment and Work Efficiency Between Natural Body and Modular Body Systems Smart Life Saver Jacket: A New Jacket to Support CPR Operation Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1