基于人工智能的智能交通治理系统优化

Aayush Sukhadia, Khush Upadhyay, Meghashree Gundeti, Smit Shah, Manan Shah
{"title":"基于人工智能的智能交通治理系统优化","authors":"Aayush Sukhadia,&nbsp;Khush Upadhyay,&nbsp;Meghashree Gundeti,&nbsp;Smit Shah,&nbsp;Manan Shah","doi":"10.1007/s41133-020-00035-x","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic system shows a great scope of trade with the environment and is directly connected to it. Manual traffic systems are proving to be insufficient due to rapid urbanization. Central monitoring systems are facing scalability issues as they process increasing amounts of data received from hundreds of traffic cameras. Major traffic problems include congestion, safety, pollution (leading to various health issues) and increased need for mobility. A solution to most of them is the construction of newer and safer highways and additional lanes on existing ones, but it proves to be expensive and often not feasible. Cities are limited by space, and construction cannot keep up with ever-growing demand. Hence, a need for an improved system with a minimal manual interface is persisting. One of such methods is introduced and discussed in this paper; smart traffic governance system here used artificial intelligence to regulate and govern the course of transport and automated administration and implementation to make a difference in face of travel scenarios in urban cities suffering from such major traffic issues.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-020-00035-x","citationCount":"37","resultStr":"{\"title\":\"Optimization of Smart Traffic Governance System Using Artificial Intelligence\",\"authors\":\"Aayush Sukhadia,&nbsp;Khush Upadhyay,&nbsp;Meghashree Gundeti,&nbsp;Smit Shah,&nbsp;Manan Shah\",\"doi\":\"10.1007/s41133-020-00035-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic system shows a great scope of trade with the environment and is directly connected to it. Manual traffic systems are proving to be insufficient due to rapid urbanization. Central monitoring systems are facing scalability issues as they process increasing amounts of data received from hundreds of traffic cameras. Major traffic problems include congestion, safety, pollution (leading to various health issues) and increased need for mobility. A solution to most of them is the construction of newer and safer highways and additional lanes on existing ones, but it proves to be expensive and often not feasible. Cities are limited by space, and construction cannot keep up with ever-growing demand. Hence, a need for an improved system with a minimal manual interface is persisting. One of such methods is introduced and discussed in this paper; smart traffic governance system here used artificial intelligence to regulate and govern the course of transport and automated administration and implementation to make a difference in face of travel scenarios in urban cities suffering from such major traffic issues.</p></div>\",\"PeriodicalId\":100147,\"journal\":{\"name\":\"Augmented Human Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41133-020-00035-x\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Augmented Human Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41133-020-00035-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-020-00035-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

交通系统显示出与环境的巨大贸易范围,并与环境直接相关。由于快速的城市化,人工交通系统被证明是不够的。中央监控系统在处理从数百个交通摄像头接收到的越来越多的数据时,面临着可扩展性问题。主要的交通问题包括拥堵、安全、污染(导致各种健康问题)和对出行需求的增加。其中大多数的解决方案是在现有公路上建造更新、更安全的公路和额外的车道,但事实证明,这是昂贵的,而且往往不可行。城市受到空间的限制,建筑无法跟上日益增长的需求。因此,对具有最小手动接口的改进系统的需求一直存在。本文介绍并讨论了其中一种方法;这里的智能交通治理系统利用人工智能来规范和治理交通过程,并通过自动化管理和实施来改变城市中面临此类重大交通问题的出行场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Smart Traffic Governance System Using Artificial Intelligence

Traffic system shows a great scope of trade with the environment and is directly connected to it. Manual traffic systems are proving to be insufficient due to rapid urbanization. Central monitoring systems are facing scalability issues as they process increasing amounts of data received from hundreds of traffic cameras. Major traffic problems include congestion, safety, pollution (leading to various health issues) and increased need for mobility. A solution to most of them is the construction of newer and safer highways and additional lanes on existing ones, but it proves to be expensive and often not feasible. Cities are limited by space, and construction cannot keep up with ever-growing demand. Hence, a need for an improved system with a minimal manual interface is persisting. One of such methods is introduced and discussed in this paper; smart traffic governance system here used artificial intelligence to regulate and govern the course of transport and automated administration and implementation to make a difference in face of travel scenarios in urban cities suffering from such major traffic issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haptic Gamer Suit for Enhancing VR Games Experience Retraction Note: Application on Virtual Reality for Enhanced Education Learning, Military Training and Sports The Impact of Transferring Embodiment and Work Efficiency Between Natural Body and Modular Body Systems Smart Life Saver Jacket: A New Jacket to Support CPR Operation Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1