利用大脑活动数据识别潜在的任务转移事件

Danushka Bandara, Trevor Grant, Leanne Hirshfield, Senem Velipasalar
{"title":"利用大脑活动数据识别潜在的任务转移事件","authors":"Danushka Bandara,&nbsp;Trevor Grant,&nbsp;Leanne Hirshfield,&nbsp;Senem Velipasalar","doi":"10.1007/s41133-020-00034-y","DOIUrl":null,"url":null,"abstract":"<div><p>In Human–Machine Teaming environments, it is important to identify potential performance drops due to cognitive overload. If identified correctly, they can help improve the performance of the human–machine system by offloading some tasks to less cognitively overloaded users. This can help prevent user error that can result in critical failures. Also, it can improve productivity by keeping the human operators at an optimal performance state. This paper explores a new method for identifying user cognitive load by a three-class classification using brain activity data and by applying a convolutional neural network and long short-term memory model. The data collected from a set of cognitive benchmark experiments were used to train the model, which was then tested on two separate datasets consisting of more ecologically valid task environments. We experimented with various models built with different benchmark tasks to explore which benchmark tasks were better suited for the prediction of task shedding events in these compound tasks that are more representative of real-world scenarios. We also show that this method can be extended across-tasks and across-subject pools.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-020-00034-y","citationCount":"3","resultStr":"{\"title\":\"Identification of Potential Task Shedding Events Using Brain Activity Data\",\"authors\":\"Danushka Bandara,&nbsp;Trevor Grant,&nbsp;Leanne Hirshfield,&nbsp;Senem Velipasalar\",\"doi\":\"10.1007/s41133-020-00034-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Human–Machine Teaming environments, it is important to identify potential performance drops due to cognitive overload. If identified correctly, they can help improve the performance of the human–machine system by offloading some tasks to less cognitively overloaded users. This can help prevent user error that can result in critical failures. Also, it can improve productivity by keeping the human operators at an optimal performance state. This paper explores a new method for identifying user cognitive load by a three-class classification using brain activity data and by applying a convolutional neural network and long short-term memory model. The data collected from a set of cognitive benchmark experiments were used to train the model, which was then tested on two separate datasets consisting of more ecologically valid task environments. We experimented with various models built with different benchmark tasks to explore which benchmark tasks were better suited for the prediction of task shedding events in these compound tasks that are more representative of real-world scenarios. We also show that this method can be extended across-tasks and across-subject pools.</p></div>\",\"PeriodicalId\":100147,\"journal\":{\"name\":\"Augmented Human Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41133-020-00034-y\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Augmented Human Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41133-020-00034-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-020-00034-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在人机协作环境中,识别由于认知过载而导致的潜在性能下降是很重要的。如果识别正确,它们可以通过将一些任务卸载给认知负荷较小的用户来帮助提高人机系统的性能。这有助于防止可能导致严重故障的用户错误。此外,它还可以通过使操作员保持最佳性能状态来提高生产力。本文探索了一种新的方法,通过使用大脑活动数据进行三类分类,并应用卷积神经网络和长短期记忆模型来识别用户的认知负荷。从一组认知基准实验中收集的数据用于训练模型,然后在两个独立的数据集上进行测试,这些数据集由更具生态有效性的任务环境组成。我们对使用不同基准任务构建的各种模型进行了实验,以探索哪些基准任务更适合预测这些更能代表真实世界场景的复合任务中的任务剥离事件。我们还展示了这种方法可以在任务和主题库中进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Potential Task Shedding Events Using Brain Activity Data

In Human–Machine Teaming environments, it is important to identify potential performance drops due to cognitive overload. If identified correctly, they can help improve the performance of the human–machine system by offloading some tasks to less cognitively overloaded users. This can help prevent user error that can result in critical failures. Also, it can improve productivity by keeping the human operators at an optimal performance state. This paper explores a new method for identifying user cognitive load by a three-class classification using brain activity data and by applying a convolutional neural network and long short-term memory model. The data collected from a set of cognitive benchmark experiments were used to train the model, which was then tested on two separate datasets consisting of more ecologically valid task environments. We experimented with various models built with different benchmark tasks to explore which benchmark tasks were better suited for the prediction of task shedding events in these compound tasks that are more representative of real-world scenarios. We also show that this method can be extended across-tasks and across-subject pools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haptic Gamer Suit for Enhancing VR Games Experience Retraction Note: Application on Virtual Reality for Enhanced Education Learning, Military Training and Sports The Impact of Transferring Embodiment and Work Efficiency Between Natural Body and Modular Body Systems Smart Life Saver Jacket: A New Jacket to Support CPR Operation Unraveling the Ethical Conundrum of Artificial Intelligence: A Synthesis of Literature and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1