基于树突层显著性约束的树突神经元模型修剪方法

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE CAAI Transactions on Intelligence Technology Pub Date : 2023-06-01 DOI:10.1049/cit2.12234
Xudong Luo, Xiaohao Wen, Yan Li, Quanfu Li
{"title":"基于树突层显著性约束的树突神经元模型修剪方法","authors":"Xudong Luo,&nbsp;Xiaohao Wen,&nbsp;Yan Li,&nbsp;Quanfu Li","doi":"10.1049/cit2.12234","DOIUrl":null,"url":null,"abstract":"<p>The dendritic neural model (DNM) mimics the non-linearity of synapses in the human brain to simulate the information processing mechanisms and procedures of neurons. This enhances the understanding of biological nervous systems and the applicability of the model in various fields. However, the existing DNM suffers from high complexity and limited generalisation capability. To address these issues, a DNM pruning method with dendrite layer significance constraints is proposed. This method not only evaluates the significance of dendrite layers but also allocates the significance of a few dendrite layers in the trained model to a few dendrite layers, allowing the removal of low-significance dendrite layers. The simulation experiments on six UCI datasets demonstrate that our method surpasses existing pruning methods in terms of network size and generalisation performance.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"8 2","pages":"308-318"},"PeriodicalIF":8.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12234","citationCount":"1","resultStr":"{\"title\":\"Pruning method for dendritic neuron model based on dendrite layer significance constraints\",\"authors\":\"Xudong Luo,&nbsp;Xiaohao Wen,&nbsp;Yan Li,&nbsp;Quanfu Li\",\"doi\":\"10.1049/cit2.12234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dendritic neural model (DNM) mimics the non-linearity of synapses in the human brain to simulate the information processing mechanisms and procedures of neurons. This enhances the understanding of biological nervous systems and the applicability of the model in various fields. However, the existing DNM suffers from high complexity and limited generalisation capability. To address these issues, a DNM pruning method with dendrite layer significance constraints is proposed. This method not only evaluates the significance of dendrite layers but also allocates the significance of a few dendrite layers in the trained model to a few dendrite layers, allowing the removal of low-significance dendrite layers. The simulation experiments on six UCI datasets demonstrate that our method surpasses existing pruning methods in terms of network size and generalisation performance.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"8 2\",\"pages\":\"308-318\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12234\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12234\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12234","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

树突神经模型(DNM)模拟人脑中突触的非线性,以模拟神经元的信息处理机制和过程。这增强了对生物神经系统的理解以及该模型在各个领域的适用性。然而,现有的DNM具有高复杂性和有限的泛化能力。为了解决这些问题,提出了一种具有枝晶层显著性约束的DNM修剪方法。该方法不仅评估了枝晶层的显著性,而且还将训练模型中少数树枝晶层的重要性分配给少数枝晶层,从而可以去除低显著性的枝晶层。在六个UCI数据集上的仿真实验表明,我们的方法在网络大小和泛化性能方面优于现有的修剪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pruning method for dendritic neuron model based on dendrite layer significance constraints

The dendritic neural model (DNM) mimics the non-linearity of synapses in the human brain to simulate the information processing mechanisms and procedures of neurons. This enhances the understanding of biological nervous systems and the applicability of the model in various fields. However, the existing DNM suffers from high complexity and limited generalisation capability. To address these issues, a DNM pruning method with dendrite layer significance constraints is proposed. This method not only evaluates the significance of dendrite layers but also allocates the significance of a few dendrite layers in the trained model to a few dendrite layers, allowing the removal of low-significance dendrite layers. The simulation experiments on six UCI datasets demonstrate that our method surpasses existing pruning methods in terms of network size and generalisation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
期刊最新文献
Guest Editorial: Knowledge-based deep learning system in bio-medicine Guest Editorial: Special issue on trustworthy machine learning for behavioural and social computing A fault-tolerant and scalable boosting method over vertically partitioned data Multi-objective interval type-2 fuzzy linear programming problem with vagueness in coefficient Prediction and optimisation of gasoline quality in petroleum refining: The use of machine learning model as a surrogate in optimisation framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1