{"title":"视觉人群分析:开放研究问题","authors":"Muhammad Asif Khan, Hamid Menouar, Ridha Hamila","doi":"10.1002/aaai.12117","DOIUrl":null,"url":null,"abstract":"<p>Over the last decade, there has been a remarkable surge in interest in automated crowd monitoring within the computer vision community. Modern deep-learning approaches have made it possible to develop fully automated vision-based crowd-monitoring applications. However, despite the magnitude of the issue at hand, the significant technological advancements, and the consistent interest of the research community, there are still numerous challenges that need to be overcome. In this article, we delve into six major areas of visual crowd analysis, emphasizing the key developments in each of these areas. We outline the crucial unresolved issues that must be tackled in future works, in order to ensure that the field of automated crowd monitoring continues to progress and thrive. Several surveys related to this topic have been conducted in the past. Nonetheless, this article thoroughly examines and presents a more intuitive categorization of works, while also depicting the latest breakthroughs within the field, incorporating more recent studies carried out within the last few years in a concise manner. By carefully choosing prominent works with significant contributions in terms of novelty or performance gains, this paper presents a more comprehensive exposition of advancements in the current state-of-the-art.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 3","pages":"296-311"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12117","citationCount":"0","resultStr":"{\"title\":\"Visual crowd analysis: Open research problems\",\"authors\":\"Muhammad Asif Khan, Hamid Menouar, Ridha Hamila\",\"doi\":\"10.1002/aaai.12117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the last decade, there has been a remarkable surge in interest in automated crowd monitoring within the computer vision community. Modern deep-learning approaches have made it possible to develop fully automated vision-based crowd-monitoring applications. However, despite the magnitude of the issue at hand, the significant technological advancements, and the consistent interest of the research community, there are still numerous challenges that need to be overcome. In this article, we delve into six major areas of visual crowd analysis, emphasizing the key developments in each of these areas. We outline the crucial unresolved issues that must be tackled in future works, in order to ensure that the field of automated crowd monitoring continues to progress and thrive. Several surveys related to this topic have been conducted in the past. Nonetheless, this article thoroughly examines and presents a more intuitive categorization of works, while also depicting the latest breakthroughs within the field, incorporating more recent studies carried out within the last few years in a concise manner. By carefully choosing prominent works with significant contributions in terms of novelty or performance gains, this paper presents a more comprehensive exposition of advancements in the current state-of-the-art.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"44 3\",\"pages\":\"296-311\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12117\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12117","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Over the last decade, there has been a remarkable surge in interest in automated crowd monitoring within the computer vision community. Modern deep-learning approaches have made it possible to develop fully automated vision-based crowd-monitoring applications. However, despite the magnitude of the issue at hand, the significant technological advancements, and the consistent interest of the research community, there are still numerous challenges that need to be overcome. In this article, we delve into six major areas of visual crowd analysis, emphasizing the key developments in each of these areas. We outline the crucial unresolved issues that must be tackled in future works, in order to ensure that the field of automated crowd monitoring continues to progress and thrive. Several surveys related to this topic have been conducted in the past. Nonetheless, this article thoroughly examines and presents a more intuitive categorization of works, while also depicting the latest breakthroughs within the field, incorporating more recent studies carried out within the last few years in a concise manner. By carefully choosing prominent works with significant contributions in terms of novelty or performance gains, this paper presents a more comprehensive exposition of advancements in the current state-of-the-art.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.