{"title":"使用语言模型理解政治两极分化:数据集和方法","authors":"Samiran Gode, Supreeth Bare, Bhiksha Raj, Hyungon Yoo","doi":"10.1002/aaai.12104","DOIUrl":null,"url":null,"abstract":"<p>Our paper aims to analyze political polarization in US political system using language models, and thereby help candidates make an informed decision. The availability of this information will help voters understand their candidates' views on the economy, healthcare, education, and other social issues. Our main contributions are a dataset extracted from Wikipedia that spans the past 120 years and a language model-based method that helps analyze how polarized a candidate is. Our data are divided into two parts, background information and political information about a candidate, since our hypothesis is that the political views of a candidate should be based on reason and be independent of factors such as birthplace, alma mater, and so forth. We further split this data into four phases chronologically, to help understand if and how the polarization amongst candidates changes. This data has been cleaned to remove biases. To understand the polarization, we begin by showing results from some classical language models in Word2Vec and Doc2Vec. And then use more powerful techniques like the Longformer, a transformer-based encoder, to assimilate more information and find the nearest neighbors of each candidate based on their political view and their background. The code and data for the project will be available here: “https://github.com/samirangode/Understanding_Polarization”</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 3","pages":"248-254"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12104","citationCount":"0","resultStr":"{\"title\":\"Understanding political polarization using language models: A dataset and method\",\"authors\":\"Samiran Gode, Supreeth Bare, Bhiksha Raj, Hyungon Yoo\",\"doi\":\"10.1002/aaai.12104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our paper aims to analyze political polarization in US political system using language models, and thereby help candidates make an informed decision. The availability of this information will help voters understand their candidates' views on the economy, healthcare, education, and other social issues. Our main contributions are a dataset extracted from Wikipedia that spans the past 120 years and a language model-based method that helps analyze how polarized a candidate is. Our data are divided into two parts, background information and political information about a candidate, since our hypothesis is that the political views of a candidate should be based on reason and be independent of factors such as birthplace, alma mater, and so forth. We further split this data into four phases chronologically, to help understand if and how the polarization amongst candidates changes. This data has been cleaned to remove biases. To understand the polarization, we begin by showing results from some classical language models in Word2Vec and Doc2Vec. And then use more powerful techniques like the Longformer, a transformer-based encoder, to assimilate more information and find the nearest neighbors of each candidate based on their political view and their background. The code and data for the project will be available here: “https://github.com/samirangode/Understanding_Polarization”</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"44 3\",\"pages\":\"248-254\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Understanding political polarization using language models: A dataset and method
Our paper aims to analyze political polarization in US political system using language models, and thereby help candidates make an informed decision. The availability of this information will help voters understand their candidates' views on the economy, healthcare, education, and other social issues. Our main contributions are a dataset extracted from Wikipedia that spans the past 120 years and a language model-based method that helps analyze how polarized a candidate is. Our data are divided into two parts, background information and political information about a candidate, since our hypothesis is that the political views of a candidate should be based on reason and be independent of factors such as birthplace, alma mater, and so forth. We further split this data into four phases chronologically, to help understand if and how the polarization amongst candidates changes. This data has been cleaned to remove biases. To understand the polarization, we begin by showing results from some classical language models in Word2Vec and Doc2Vec. And then use more powerful techniques like the Longformer, a transformer-based encoder, to assimilate more information and find the nearest neighbors of each candidate based on their political view and their background. The code and data for the project will be available here: “https://github.com/samirangode/Understanding_Polarization”
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.