{"title":"选举舞弊的新颖性检测:基于代理的模拟数据的案例研究","authors":"Khurram Yamin, Nima Jadali, Yao Xie, Dima Nazzal","doi":"10.1002/aaai.12112","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a robust election simulation model and independently developed election anomaly detection algorithm that demonstrates the simulation's utility. The simulation generates artificial elections with similar properties and trends as elections from the real world, while giving users control and knowledge over all the important components of the elections. We generate a clean election results dataset without fraud as well as datasets with varying degrees of fraud. We then measure how well the algorithm is able to successfully detect the level of fraud present. The algorithm determines how similar actual election results are as compared to the predicted results from polling and a regression model of other regions that have similar demographics. We use k-means to partition electoral regions into clusters such that demographic homogeneity is maximized among clusters. We then use a novelty detection algorithm implemented as a one-class support vector machine where the clean data is provided in the form of polling predictions and regression predictions. The regression predictions are built from the actual data in such a way that the data supervises itself. We show both the effectiveness of the simulation technique and the machine learning model in its success in identifying fraudulent regions.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 3","pages":"255-262"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12112","citationCount":"0","resultStr":"{\"title\":\"Novelty detection for election fraud: A case study with agent-based simulation data\",\"authors\":\"Khurram Yamin, Nima Jadali, Yao Xie, Dima Nazzal\",\"doi\":\"10.1002/aaai.12112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a robust election simulation model and independently developed election anomaly detection algorithm that demonstrates the simulation's utility. The simulation generates artificial elections with similar properties and trends as elections from the real world, while giving users control and knowledge over all the important components of the elections. We generate a clean election results dataset without fraud as well as datasets with varying degrees of fraud. We then measure how well the algorithm is able to successfully detect the level of fraud present. The algorithm determines how similar actual election results are as compared to the predicted results from polling and a regression model of other regions that have similar demographics. We use k-means to partition electoral regions into clusters such that demographic homogeneity is maximized among clusters. We then use a novelty detection algorithm implemented as a one-class support vector machine where the clean data is provided in the form of polling predictions and regression predictions. The regression predictions are built from the actual data in such a way that the data supervises itself. We show both the effectiveness of the simulation technique and the machine learning model in its success in identifying fraudulent regions.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"44 3\",\"pages\":\"255-262\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12112\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12112","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Novelty detection for election fraud: A case study with agent-based simulation data
In this paper, we propose a robust election simulation model and independently developed election anomaly detection algorithm that demonstrates the simulation's utility. The simulation generates artificial elections with similar properties and trends as elections from the real world, while giving users control and knowledge over all the important components of the elections. We generate a clean election results dataset without fraud as well as datasets with varying degrees of fraud. We then measure how well the algorithm is able to successfully detect the level of fraud present. The algorithm determines how similar actual election results are as compared to the predicted results from polling and a regression model of other regions that have similar demographics. We use k-means to partition electoral regions into clusters such that demographic homogeneity is maximized among clusters. We then use a novelty detection algorithm implemented as a one-class support vector machine where the clean data is provided in the form of polling predictions and regression predictions. The regression predictions are built from the actual data in such a way that the data supervises itself. We show both the effectiveness of the simulation technique and the machine learning model in its success in identifying fraudulent regions.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.