{"title":"化学物质介导植物相关真菌和昆虫之间的相互作用","authors":"Yang Xu, Lei Xu, Hong He","doi":"10.1111/jse.12956","DOIUrl":null,"url":null,"abstract":"<p>Plants, insects, and fungi have successfully colonized almost all terrestrial ecosystems, and their interactions have been the subject of numerous studies in recent decades. Plant-associated fungi include endophytic, arbuscular mycorrhizal, ambrosia, saprotrophic, pathogenic, and floral fungi. These fungi interact with insects through various mechanisms, including the modification of plant nutritional quality and degradation of plant defensive allelochemicals that are toxic to insects. Additionally, certain fungi assist plants in defending against insect attacks. Correspondingly, insects have evolved sophisticated nervous, digestive, and muscular systems that assist them in recognizing, preying on, and dispersing plant-associated fungi; these organ systems allow insects to detect and respond to various chemical signatures in the environment. Insects can be nourished, attracted, repelled, poisoned, and killed by chemical molecules produced by plant-associated fungi, which could be beneficial or detrimental to plants. This review summarizes the functions of different chemicals from the perspective of plant–fungus–insect interactions and discusses the challenges and future perspectives in this chemical ecology research field.</p>","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jse.12956","citationCount":"1","resultStr":"{\"title\":\"Chemicals mediate the interaction between plant-associated fungi and insects\",\"authors\":\"Yang Xu, Lei Xu, Hong He\",\"doi\":\"10.1111/jse.12956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plants, insects, and fungi have successfully colonized almost all terrestrial ecosystems, and their interactions have been the subject of numerous studies in recent decades. Plant-associated fungi include endophytic, arbuscular mycorrhizal, ambrosia, saprotrophic, pathogenic, and floral fungi. These fungi interact with insects through various mechanisms, including the modification of plant nutritional quality and degradation of plant defensive allelochemicals that are toxic to insects. Additionally, certain fungi assist plants in defending against insect attacks. Correspondingly, insects have evolved sophisticated nervous, digestive, and muscular systems that assist them in recognizing, preying on, and dispersing plant-associated fungi; these organ systems allow insects to detect and respond to various chemical signatures in the environment. Insects can be nourished, attracted, repelled, poisoned, and killed by chemical molecules produced by plant-associated fungi, which could be beneficial or detrimental to plants. This review summarizes the functions of different chemicals from the perspective of plant–fungus–insect interactions and discusses the challenges and future perspectives in this chemical ecology research field.</p>\",\"PeriodicalId\":17087,\"journal\":{\"name\":\"Journal of Systematics and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jse.12956\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematics and Evolution\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jse.12956\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"1089","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jse.12956","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Chemicals mediate the interaction between plant-associated fungi and insects
Plants, insects, and fungi have successfully colonized almost all terrestrial ecosystems, and their interactions have been the subject of numerous studies in recent decades. Plant-associated fungi include endophytic, arbuscular mycorrhizal, ambrosia, saprotrophic, pathogenic, and floral fungi. These fungi interact with insects through various mechanisms, including the modification of plant nutritional quality and degradation of plant defensive allelochemicals that are toxic to insects. Additionally, certain fungi assist plants in defending against insect attacks. Correspondingly, insects have evolved sophisticated nervous, digestive, and muscular systems that assist them in recognizing, preying on, and dispersing plant-associated fungi; these organ systems allow insects to detect and respond to various chemical signatures in the environment. Insects can be nourished, attracted, repelled, poisoned, and killed by chemical molecules produced by plant-associated fungi, which could be beneficial or detrimental to plants. This review summarizes the functions of different chemicals from the perspective of plant–fungus–insect interactions and discusses the challenges and future perspectives in this chemical ecology research field.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.