R. K. Braghiere, Y. Wang, A. Gagné-Landmann, P. G. Brodrick, A. A. Bloom, A. J. Norton, S. Ma, P. Levine, M. Longo, K. Deck, P. Gentine, J. R. Worden, C. Frankenberg, T. Schneider
{"title":"高光谱土壤反照率信息对改进地球系统模型投影的重要性","authors":"R. K. Braghiere, Y. Wang, A. Gagné-Landmann, P. G. Brodrick, A. A. Bloom, A. J. Norton, S. Ma, P. Levine, M. Longo, K. Deck, P. Gentine, J. R. Worden, C. Frankenberg, T. Schneider","doi":"10.1029/2023AV000910","DOIUrl":null,"url":null,"abstract":"<p>Earth system models (ESMs) typically simplify the representation of land surface spectral albedo to two values, which correspond to the photosynthetically active radiation (PAR, 400–700 nm) and the near infrared (NIR, 700–2,500 nm) spectral bands. However, the availability of hyperspectral observations now allows for a more direct retrieval of ecological parameters and reduction of uncertainty in surface reflectance. To investigate sensitivity and quantify biases of incorporating hyperspectral albedo information into ESMs, we examine how shortwave soil albedo affects surface radiative forcing and simulations of the carbon and water cycles. Results reveal that the use of two broadband values to represent soil albedo can introduce systematic radiative-forcing differences compared to a hyperspectral representation. Specifically, we estimate soil albedo biases of ±0.2 over desert areas, which can result in spectrally integrated radiative forcing divergences of up to 30 W m<sup>−2</sup>, primarily due to discrepancies in the blue (404–504 nm) and far-red (702–747 nm) regions. Furthermore, coupled land-atmosphere simulations indicate a significant difference in net solar flux at the top of the atmosphere (>3.3 W m<sup>−2</sup>), which can impact global energy fluxes, rainfall, temperature, and photosynthesis. Finally, simulations show that considering the hyperspectrally resolved soil reflectance leads to increased maximum daily temperatures under current and future CO<sub>2</sub> concentrations.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"4 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000910","citationCount":"2","resultStr":"{\"title\":\"The Importance of Hyperspectral Soil Albedo Information for Improving Earth System Model Projections\",\"authors\":\"R. K. Braghiere, Y. Wang, A. Gagné-Landmann, P. G. Brodrick, A. A. Bloom, A. J. Norton, S. Ma, P. Levine, M. Longo, K. Deck, P. Gentine, J. R. Worden, C. Frankenberg, T. Schneider\",\"doi\":\"10.1029/2023AV000910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth system models (ESMs) typically simplify the representation of land surface spectral albedo to two values, which correspond to the photosynthetically active radiation (PAR, 400–700 nm) and the near infrared (NIR, 700–2,500 nm) spectral bands. However, the availability of hyperspectral observations now allows for a more direct retrieval of ecological parameters and reduction of uncertainty in surface reflectance. To investigate sensitivity and quantify biases of incorporating hyperspectral albedo information into ESMs, we examine how shortwave soil albedo affects surface radiative forcing and simulations of the carbon and water cycles. Results reveal that the use of two broadband values to represent soil albedo can introduce systematic radiative-forcing differences compared to a hyperspectral representation. Specifically, we estimate soil albedo biases of ±0.2 over desert areas, which can result in spectrally integrated radiative forcing divergences of up to 30 W m<sup>−2</sup>, primarily due to discrepancies in the blue (404–504 nm) and far-red (702–747 nm) regions. Furthermore, coupled land-atmosphere simulations indicate a significant difference in net solar flux at the top of the atmosphere (>3.3 W m<sup>−2</sup>), which can impact global energy fluxes, rainfall, temperature, and photosynthesis. Finally, simulations show that considering the hyperspectrally resolved soil reflectance leads to increased maximum daily temperatures under current and future CO<sub>2</sub> concentrations.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000910\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
地球系统模型(ESM)通常将地表光谱反照率的表示简化为两个值,这两个值对应于光合活性辐射(标准杆数,400–700 nm)和近红外(NIR,700–2500 nm)光谱带。然而,高光谱观测的可用性现在允许更直接地检索生态参数,并减少表面反射率的不确定性。为了研究将高光谱反照率信息纳入ESM的敏感性和量化偏差,我们研究了短波土壤反照率如何影响地表辐射强迫以及碳和水循环的模拟。结果表明,与高光谱表示相比,使用两个宽带值来表示土壤反照率可能会引入系统的辐射强迫差异。具体而言,我们估计沙漠地区的土壤反照率偏差为±0.2,这可能导致高达30 W m−2的光谱综合辐射强迫发散,主要是由于蓝色(404–504 nm)和远红色(702–747 nm)区域的差异。此外,陆地-大气耦合模拟表明,大气层顶部的净太阳通量存在显著差异(>;3.3 W m−2),这可能会影响全球能量通量、降雨量、温度和光合作用。最后,模拟表明,在当前和未来的二氧化碳浓度下,考虑高光谱分辨率的土壤反射率会导致最高日温度升高。
The Importance of Hyperspectral Soil Albedo Information for Improving Earth System Model Projections
Earth system models (ESMs) typically simplify the representation of land surface spectral albedo to two values, which correspond to the photosynthetically active radiation (PAR, 400–700 nm) and the near infrared (NIR, 700–2,500 nm) spectral bands. However, the availability of hyperspectral observations now allows for a more direct retrieval of ecological parameters and reduction of uncertainty in surface reflectance. To investigate sensitivity and quantify biases of incorporating hyperspectral albedo information into ESMs, we examine how shortwave soil albedo affects surface radiative forcing and simulations of the carbon and water cycles. Results reveal that the use of two broadband values to represent soil albedo can introduce systematic radiative-forcing differences compared to a hyperspectral representation. Specifically, we estimate soil albedo biases of ±0.2 over desert areas, which can result in spectrally integrated radiative forcing divergences of up to 30 W m−2, primarily due to discrepancies in the blue (404–504 nm) and far-red (702–747 nm) regions. Furthermore, coupled land-atmosphere simulations indicate a significant difference in net solar flux at the top of the atmosphere (>3.3 W m−2), which can impact global energy fluxes, rainfall, temperature, and photosynthesis. Finally, simulations show that considering the hyperspectrally resolved soil reflectance leads to increased maximum daily temperatures under current and future CO2 concentrations.