Hemanth Gudaparthi, Nan Niu, Yilong Yang, Matthew Van Doren, Reese Johnson
{"title":"深度学习的目的适应性:一个转换问题框架的视角","authors":"Hemanth Gudaparthi, Nan Niu, Yilong Yang, Matthew Van Doren, Reese Johnson","doi":"10.1049/cit2.12237","DOIUrl":null,"url":null,"abstract":"<p>Combined sewer overflows represent significant risks to human health as untreated water is discharged to the environment. Municipalities, such as the Metropolitan Sewer District of Greater Cincinnati (MSDGC), recently began collecting large amounts of water-related data and considering the adoption of deep learning (DL) solutions like recurrent neural network (RNN) for predicting overflow events. Clearly, assessing the DL's fitness for the purpose requires a systematic understanding of the problem context. In this study, we propose a requirements engineering framework that uses the problem frames to identify and structure the stakeholder concerns, analyses the physical situations in which the high-quality data assumptions may not hold, and derives the software testing criteria in the form of metamorphic relations that incorporate both input transformations and output comparisons. Applying our framework to MSDGC's overflow prediction problem enables a principled way to evaluate different RNN solutions in meeting the requirements.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"8 2","pages":"343-354"},"PeriodicalIF":8.4000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12237","citationCount":"1","resultStr":"{\"title\":\"Deep learning's fitness for purpose: A transformation problem frame's perspective\",\"authors\":\"Hemanth Gudaparthi, Nan Niu, Yilong Yang, Matthew Van Doren, Reese Johnson\",\"doi\":\"10.1049/cit2.12237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Combined sewer overflows represent significant risks to human health as untreated water is discharged to the environment. Municipalities, such as the Metropolitan Sewer District of Greater Cincinnati (MSDGC), recently began collecting large amounts of water-related data and considering the adoption of deep learning (DL) solutions like recurrent neural network (RNN) for predicting overflow events. Clearly, assessing the DL's fitness for the purpose requires a systematic understanding of the problem context. In this study, we propose a requirements engineering framework that uses the problem frames to identify and structure the stakeholder concerns, analyses the physical situations in which the high-quality data assumptions may not hold, and derives the software testing criteria in the form of metamorphic relations that incorporate both input transformations and output comparisons. Applying our framework to MSDGC's overflow prediction problem enables a principled way to evaluate different RNN solutions in meeting the requirements.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"8 2\",\"pages\":\"343-354\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12237\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12237\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12237","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep learning's fitness for purpose: A transformation problem frame's perspective
Combined sewer overflows represent significant risks to human health as untreated water is discharged to the environment. Municipalities, such as the Metropolitan Sewer District of Greater Cincinnati (MSDGC), recently began collecting large amounts of water-related data and considering the adoption of deep learning (DL) solutions like recurrent neural network (RNN) for predicting overflow events. Clearly, assessing the DL's fitness for the purpose requires a systematic understanding of the problem context. In this study, we propose a requirements engineering framework that uses the problem frames to identify and structure the stakeholder concerns, analyses the physical situations in which the high-quality data assumptions may not hold, and derives the software testing criteria in the form of metamorphic relations that incorporate both input transformations and output comparisons. Applying our framework to MSDGC's overflow prediction problem enables a principled way to evaluate different RNN solutions in meeting the requirements.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.