用于生成标准和单个人锥光谱灵敏度的公式

IF 1.2 3区 工程技术 Q4 CHEMISTRY, APPLIED Color Research and Application Pub Date : 2023-07-19 DOI:10.1002/col.22879
Andrew Stockman, Andrew T. Rider
{"title":"用于生成标准和单个人锥光谱灵敏度的公式","authors":"Andrew Stockman,&nbsp;Andrew T. Rider","doi":"10.1002/col.22879","DOIUrl":null,"url":null,"abstract":"<p>Normal color perception is complicated. But at its initial stage it is relatively simple, since at photopic levels it depends on the activations of just three photoreceptor types: the long- (L-), middle- (M-) and short- (S-) wavelength-sensitive cones. Knowledge of how each type responds to different wavelengths—the three cone spectral sensitivities—can be used to model human color vision and in practical applications to specify color and predict color matches. The CIE has sanctioned the cone spectral sensitivity estimates of Stockman and Sharpe (Stockman and Sharpe, 2000, Vision Res) and their associated measures of luminous efficiency as “physiologically-relevant” standards for color vision (CIE, 2006; 2015). These LMS cone spectral sensitivities are specified at 5- and 1-nm steps for mean “standard” observers with normal cone photopigments and average ocular transparencies, both of which can vary in the population. Here, we provide formulae for the three cone spectral sensitivities as well as for macular and lens pigment density spectra, all as continuous functions of wavelength from 360 to 850 nm. These functions reproduce the tabulated discrete CIE LMS cone spectral sensitivities for 2-deg and 10-deg with little error in both linear and logarithmic units. Furthermore, these formulae allow the easy computation of non-standard cone spectral sensitivities (and other color matching functions) with individual differences in macular, lens and photopigment optical densities, and with spectrally shifted hybrid or polymorphic L- and M-cone photopigments appropriate for either normal or red-green color vision deficient observers.</p>","PeriodicalId":10459,"journal":{"name":"Color Research and Application","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/col.22879","citationCount":"1","resultStr":"{\"title\":\"Formulae for generating standard and individual human cone spectral sensitivities\",\"authors\":\"Andrew Stockman,&nbsp;Andrew T. Rider\",\"doi\":\"10.1002/col.22879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Normal color perception is complicated. But at its initial stage it is relatively simple, since at photopic levels it depends on the activations of just three photoreceptor types: the long- (L-), middle- (M-) and short- (S-) wavelength-sensitive cones. Knowledge of how each type responds to different wavelengths—the three cone spectral sensitivities—can be used to model human color vision and in practical applications to specify color and predict color matches. The CIE has sanctioned the cone spectral sensitivity estimates of Stockman and Sharpe (Stockman and Sharpe, 2000, Vision Res) and their associated measures of luminous efficiency as “physiologically-relevant” standards for color vision (CIE, 2006; 2015). These LMS cone spectral sensitivities are specified at 5- and 1-nm steps for mean “standard” observers with normal cone photopigments and average ocular transparencies, both of which can vary in the population. Here, we provide formulae for the three cone spectral sensitivities as well as for macular and lens pigment density spectra, all as continuous functions of wavelength from 360 to 850 nm. These functions reproduce the tabulated discrete CIE LMS cone spectral sensitivities for 2-deg and 10-deg with little error in both linear and logarithmic units. Furthermore, these formulae allow the easy computation of non-standard cone spectral sensitivities (and other color matching functions) with individual differences in macular, lens and photopigment optical densities, and with spectrally shifted hybrid or polymorphic L- and M-cone photopigments appropriate for either normal or red-green color vision deficient observers.</p>\",\"PeriodicalId\":10459,\"journal\":{\"name\":\"Color Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/col.22879\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Color Research and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/col.22879\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Color Research and Application","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/col.22879","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

正常的颜色感知是复杂的。但在其初始阶段,它相对简单,因为在感光水平上,它只取决于三种感光体类型的激活:长(L-)、中(M-)和短(S-)波长敏感锥。关于每种类型如何响应不同波长的知识——三锥光谱灵敏度——可以用于模拟人类的色觉,并在实际应用中用于指定颜色和预测颜色匹配。CIE已批准Stockman和Sharpe的锥形光谱灵敏度估计值(Stockman和Sharpe,2000,Vision Res)及其相关的发光效率测量值作为色觉的“生理相关”标准(CIE,2006;2015)。对于具有正常锥形光色素和平均眼睛透明度的平均“标准”观察者,这些LMS锥形光谱灵敏度以5和1 nm的步长指定,这两种情况在人群中都可能有所不同。在这里,我们提供了三个锥体光谱灵敏度以及黄斑和晶状体色素密度光谱的公式,所有这些都是360到850波长的连续函数 nm。这些函数再现了2度和10度的表列离散CIE LMS锥形光谱灵敏度,线性和对数单位的误差很小。此外,这些公式允许容易地计算非标准圆锥光谱灵敏度(和其他颜色匹配函数),黄斑、晶状体和光色素光密度的个体差异,以及适用于正常或红绿色视力缺陷观察者的光谱偏移混合或多态L和M圆锥光色素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulae for generating standard and individual human cone spectral sensitivities

Normal color perception is complicated. But at its initial stage it is relatively simple, since at photopic levels it depends on the activations of just three photoreceptor types: the long- (L-), middle- (M-) and short- (S-) wavelength-sensitive cones. Knowledge of how each type responds to different wavelengths—the three cone spectral sensitivities—can be used to model human color vision and in practical applications to specify color and predict color matches. The CIE has sanctioned the cone spectral sensitivity estimates of Stockman and Sharpe (Stockman and Sharpe, 2000, Vision Res) and their associated measures of luminous efficiency as “physiologically-relevant” standards for color vision (CIE, 2006; 2015). These LMS cone spectral sensitivities are specified at 5- and 1-nm steps for mean “standard” observers with normal cone photopigments and average ocular transparencies, both of which can vary in the population. Here, we provide formulae for the three cone spectral sensitivities as well as for macular and lens pigment density spectra, all as continuous functions of wavelength from 360 to 850 nm. These functions reproduce the tabulated discrete CIE LMS cone spectral sensitivities for 2-deg and 10-deg with little error in both linear and logarithmic units. Furthermore, these formulae allow the easy computation of non-standard cone spectral sensitivities (and other color matching functions) with individual differences in macular, lens and photopigment optical densities, and with spectrally shifted hybrid or polymorphic L- and M-cone photopigments appropriate for either normal or red-green color vision deficient observers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Color Research and Application
Color Research and Application 工程技术-工程:化工
CiteScore
3.70
自引率
7.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: Color Research and Application provides a forum for the publication of peer-reviewed research reviews, original research articles, and editorials of the highest quality on the science, technology, and application of color in multiple disciplines. Due to the highly interdisciplinary influence of color, the readership of the journal is similarly widespread and includes those in business, art, design, education, as well as various industries.
期刊最新文献
From color naming to color perception: Cross‐linguistic differences of the chromatic information processing in monolingual and bilingual speakers Textile color formulation methods: A literature review Issue Information Evaluating the perceived brightness of chromatic stimuli with backgrounds of varying luminance W and V shape features based on measured skin spectral reflectance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1