{"title":"利用耦合对抗性学习提高跨域多指指纹匹配的互操作性","authors":"Md Mahedi Hasan, Nasser Nasrabadi, Jeremy Dawson","doi":"10.1049/bme2.12117","DOIUrl":null,"url":null,"abstract":"<p>Improving interoperability in contactless-to-contact fingerprint matching is a crucial factor for the mainstream adoption of contactless fingerphoto devices. However, matching contactless probe images against legacy contact-based gallery images is very challenging due to the presence of heterogeneity between these domains. Moreover, unconstrained acquisition of fingerphotos produces perspective distortion. Therefore, direct matching of fingerprint features suffers severe performance degradation on cross-domain interoperability. In this study, to address this issue, the authors propose a coupled adversarial learning framework to learn a fingerprint representation in a low-dimensional subspace that is discriminative and domain-invariant in nature. In fact, using a conditional coupled generative adversarial network, the authors project both the contactless and the contact-based fingerprint into a latent subspace to explore the hidden relationship between them using class-specific contrastive loss and ArcFace loss. The ArcFace loss ensures intra-class compactness and inter-class separability, whereas the contrastive loss minimises the distance between the subspaces for the same finger. Experiments on four challenging datasets demonstrate that our proposed model outperforms state-of-the methods and two top-performing commercial-off-the-shelf SDKs, that is, Verifinger v12.0 and Innovatrics. In addition, the authors also introduce a multi-finger score fusion network that significantly boosts interoperability by effectively utilising the multi-finger input of the same subject for both cross-domain and cross-sensor settings.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 4","pages":"194-210"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12117","citationCount":"0","resultStr":"{\"title\":\"On improving interoperability for cross-domain multi-finger fingerprint matching using coupled adversarial learning\",\"authors\":\"Md Mahedi Hasan, Nasser Nasrabadi, Jeremy Dawson\",\"doi\":\"10.1049/bme2.12117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Improving interoperability in contactless-to-contact fingerprint matching is a crucial factor for the mainstream adoption of contactless fingerphoto devices. However, matching contactless probe images against legacy contact-based gallery images is very challenging due to the presence of heterogeneity between these domains. Moreover, unconstrained acquisition of fingerphotos produces perspective distortion. Therefore, direct matching of fingerprint features suffers severe performance degradation on cross-domain interoperability. In this study, to address this issue, the authors propose a coupled adversarial learning framework to learn a fingerprint representation in a low-dimensional subspace that is discriminative and domain-invariant in nature. In fact, using a conditional coupled generative adversarial network, the authors project both the contactless and the contact-based fingerprint into a latent subspace to explore the hidden relationship between them using class-specific contrastive loss and ArcFace loss. The ArcFace loss ensures intra-class compactness and inter-class separability, whereas the contrastive loss minimises the distance between the subspaces for the same finger. Experiments on four challenging datasets demonstrate that our proposed model outperforms state-of-the methods and two top-performing commercial-off-the-shelf SDKs, that is, Verifinger v12.0 and Innovatrics. In addition, the authors also introduce a multi-finger score fusion network that significantly boosts interoperability by effectively utilising the multi-finger input of the same subject for both cross-domain and cross-sensor settings.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"12 4\",\"pages\":\"194-210\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12117\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12117","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
On improving interoperability for cross-domain multi-finger fingerprint matching using coupled adversarial learning
Improving interoperability in contactless-to-contact fingerprint matching is a crucial factor for the mainstream adoption of contactless fingerphoto devices. However, matching contactless probe images against legacy contact-based gallery images is very challenging due to the presence of heterogeneity between these domains. Moreover, unconstrained acquisition of fingerphotos produces perspective distortion. Therefore, direct matching of fingerprint features suffers severe performance degradation on cross-domain interoperability. In this study, to address this issue, the authors propose a coupled adversarial learning framework to learn a fingerprint representation in a low-dimensional subspace that is discriminative and domain-invariant in nature. In fact, using a conditional coupled generative adversarial network, the authors project both the contactless and the contact-based fingerprint into a latent subspace to explore the hidden relationship between them using class-specific contrastive loss and ArcFace loss. The ArcFace loss ensures intra-class compactness and inter-class separability, whereas the contrastive loss minimises the distance between the subspaces for the same finger. Experiments on four challenging datasets demonstrate that our proposed model outperforms state-of-the methods and two top-performing commercial-off-the-shelf SDKs, that is, Verifinger v12.0 and Innovatrics. In addition, the authors also introduce a multi-finger score fusion network that significantly boosts interoperability by effectively utilising the multi-finger input of the same subject for both cross-domain and cross-sensor settings.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues