{"title":"基于迁移学习的肝移植术后并发症计算机辅助诊断。","authors":"Ying Zhang, Chenyuan Shangguan, Xuena Zhang, Jialin Ma, Jiyuan He, Meng Jia, Na Chen","doi":"10.1007/s12539-023-00588-6","DOIUrl":null,"url":null,"abstract":"<p><p>Liver transplantation is one of the most effective treatments for acute liver failure, cirrhosis, and even liver cancer. The prediction of postoperative complications is of great significance for liver transplantation. However, the existing prediction methods based on traditional machine learning are often unavailable or unreliable due to the insufficient amount of real liver transplantation data. Therefore, we propose a new framework to increase the accuracy of computer-aided diagnosis of complications after liver transplantation with transfer learning, which can handle small-scale but high-dimensional data problems. Furthermore, since data samples are often high dimensional in the real world, capturing key features that influence postoperative complications can help make the correct diagnosis for patients. So, we also introduce the SHapley Additive exPlanation (SHAP) method into our framework for exploring the key features of postoperative complications. We used data obtained from 425 patients with 456 features in our experiments. Experimental results show that our approach outperforms all compared baseline methods in predicting postoperative complications. In our work, the average precision, the mean recall, and the mean F1 score reach 91.22%, 91.70%, and 91.18%, respectively.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"123-140"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-Aided Diagnosis of Complications After Liver Transplantation Based on Transfer Learning.\",\"authors\":\"Ying Zhang, Chenyuan Shangguan, Xuena Zhang, Jialin Ma, Jiyuan He, Meng Jia, Na Chen\",\"doi\":\"10.1007/s12539-023-00588-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver transplantation is one of the most effective treatments for acute liver failure, cirrhosis, and even liver cancer. The prediction of postoperative complications is of great significance for liver transplantation. However, the existing prediction methods based on traditional machine learning are often unavailable or unreliable due to the insufficient amount of real liver transplantation data. Therefore, we propose a new framework to increase the accuracy of computer-aided diagnosis of complications after liver transplantation with transfer learning, which can handle small-scale but high-dimensional data problems. Furthermore, since data samples are often high dimensional in the real world, capturing key features that influence postoperative complications can help make the correct diagnosis for patients. So, we also introduce the SHapley Additive exPlanation (SHAP) method into our framework for exploring the key features of postoperative complications. We used data obtained from 425 patients with 456 features in our experiments. Experimental results show that our approach outperforms all compared baseline methods in predicting postoperative complications. In our work, the average precision, the mean recall, and the mean F1 score reach 91.22%, 91.70%, and 91.18%, respectively.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"123-140\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00588-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00588-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Computer-Aided Diagnosis of Complications After Liver Transplantation Based on Transfer Learning.
Liver transplantation is one of the most effective treatments for acute liver failure, cirrhosis, and even liver cancer. The prediction of postoperative complications is of great significance for liver transplantation. However, the existing prediction methods based on traditional machine learning are often unavailable or unreliable due to the insufficient amount of real liver transplantation data. Therefore, we propose a new framework to increase the accuracy of computer-aided diagnosis of complications after liver transplantation with transfer learning, which can handle small-scale but high-dimensional data problems. Furthermore, since data samples are often high dimensional in the real world, capturing key features that influence postoperative complications can help make the correct diagnosis for patients. So, we also introduce the SHapley Additive exPlanation (SHAP) method into our framework for exploring the key features of postoperative complications. We used data obtained from 425 patients with 456 features in our experiments. Experimental results show that our approach outperforms all compared baseline methods in predicting postoperative complications. In our work, the average precision, the mean recall, and the mean F1 score reach 91.22%, 91.70%, and 91.18%, respectively.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.