{"title":"北马其顿蜂蜜中吡咯烷啶生物碱的UHPLC-Q-TOF分析。","authors":"Marinela Cvetanoska, Marijana Pocrnić, Marina Stefova, Nives Galić, Jasmina Petreska Stanoeva","doi":"10.1080/19393210.2023.2266701","DOIUrl":null,"url":null,"abstract":"<p><p>Honey contaminated with pyrrolizidine alkaloids (PAs) could pose a risk for human consumption, being a widely consumed food product. A fast and simple LC/MS method for the analysis of pyrrolizidine alkaloids in honey was optimised to collect occurrence data. The extraction efficiency was evaluated by a systematic study of multiple solvent mixtures and clean-up procedures. The best results for PA extraction were obtained using a formic acid/methanol mixture with subsequent clean-up by the QuEChERS method, resulting in a mean recovery range of 91.8-102%. The method validation showed satisfactory intra-day (RSD < 5.1%) and inter-day precision (RSD < 9.1%). The proposed method was applied to 14 samples. A total of six PAs and two <i>N</i>-oxides were detected, with levels between 89 and 8188 µg/kg. This assessment highlights the potential risk of intoxication and the need for further investigations regarding an effective quality system for manufacturers to control PAs in honey.</p>","PeriodicalId":12286,"journal":{"name":"Food additives & contaminants. Part B, Surveillance","volume":" ","pages":"5-15"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UHPLC-Q-TOF analysis of pyrrolizidine alkaloids in North-Macedonian honey.\",\"authors\":\"Marinela Cvetanoska, Marijana Pocrnić, Marina Stefova, Nives Galić, Jasmina Petreska Stanoeva\",\"doi\":\"10.1080/19393210.2023.2266701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey contaminated with pyrrolizidine alkaloids (PAs) could pose a risk for human consumption, being a widely consumed food product. A fast and simple LC/MS method for the analysis of pyrrolizidine alkaloids in honey was optimised to collect occurrence data. The extraction efficiency was evaluated by a systematic study of multiple solvent mixtures and clean-up procedures. The best results for PA extraction were obtained using a formic acid/methanol mixture with subsequent clean-up by the QuEChERS method, resulting in a mean recovery range of 91.8-102%. The method validation showed satisfactory intra-day (RSD < 5.1%) and inter-day precision (RSD < 9.1%). The proposed method was applied to 14 samples. A total of six PAs and two <i>N</i>-oxides were detected, with levels between 89 and 8188 µg/kg. This assessment highlights the potential risk of intoxication and the need for further investigations regarding an effective quality system for manufacturers to control PAs in honey.</p>\",\"PeriodicalId\":12286,\"journal\":{\"name\":\"Food additives & contaminants. Part B, Surveillance\",\"volume\":\" \",\"pages\":\"5-15\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food additives & contaminants. Part B, Surveillance\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/19393210.2023.2266701\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food additives & contaminants. Part B, Surveillance","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19393210.2023.2266701","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
UHPLC-Q-TOF analysis of pyrrolizidine alkaloids in North-Macedonian honey.
Honey contaminated with pyrrolizidine alkaloids (PAs) could pose a risk for human consumption, being a widely consumed food product. A fast and simple LC/MS method for the analysis of pyrrolizidine alkaloids in honey was optimised to collect occurrence data. The extraction efficiency was evaluated by a systematic study of multiple solvent mixtures and clean-up procedures. The best results for PA extraction were obtained using a formic acid/methanol mixture with subsequent clean-up by the QuEChERS method, resulting in a mean recovery range of 91.8-102%. The method validation showed satisfactory intra-day (RSD < 5.1%) and inter-day precision (RSD < 9.1%). The proposed method was applied to 14 samples. A total of six PAs and two N-oxides were detected, with levels between 89 and 8188 µg/kg. This assessment highlights the potential risk of intoxication and the need for further investigations regarding an effective quality system for manufacturers to control PAs in honey.
期刊介绍:
Food Additives & Contaminants: Part B publishes surveillance data indicating the presence and levels of occurrence of designated food additives, residues and contaminants in foods, food supplements and animal feed. Data using validated methods must meet stipulated quality standards to be acceptable and must be presented in a prescribed format for subsequent data-handling.
Food Additives & Contaminants: Part B restricts its scope to include certain classes of food additives, residues and contaminants. This is based on a goal of covering those areas where there is a need to record surveillance data for the purposes of exposure and risk assessment.
The scope is initially restricted to:
Additives - food colours, artificial sweeteners, and preservatives;
Residues – veterinary drug and pesticide residues;
Contaminants – metals, mycotoxins, phycotoxins, plant toxins, nitrate/nitrite, PCDDs/PCFDs, PCBs, PAHs, acrylamide, 3-MPCD and contaminants derived from food packaging.
Readership: The readership includes scientists involved in all aspects of food safety and quality and particularly those involved in monitoring human exposure to chemicals from the diet.
Papers reporting surveillance data in areas other than the above should be submitted to Part A . The scope of Part B will be expanded from time-to-time to ensure inclusion of new areas of concern.