{"title":"测量误差建模研究进展","authors":"Mushan Li, Yanyuan Ma","doi":"10.1146/annurev-statistics-040722-043616","DOIUrl":null,"url":null,"abstract":"The issues caused by measurement errors have been recognized for almost 90 years, and research in this area has flourished since the 1980s. We review some of the classical methods in both density estimation and regression problems with measurement errors. In both problems, we consider when the original error-free model is parametric, nonparametric, and semiparametric, in combination with different error types. We also summarize and explain some new approaches, including recent developments and challenges in the high-dimensional setting.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"20 14","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Update on Measurement Error Modeling\",\"authors\":\"Mushan Li, Yanyuan Ma\",\"doi\":\"10.1146/annurev-statistics-040722-043616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issues caused by measurement errors have been recognized for almost 90 years, and research in this area has flourished since the 1980s. We review some of the classical methods in both density estimation and regression problems with measurement errors. In both problems, we consider when the original error-free model is parametric, nonparametric, and semiparametric, in combination with different error types. We also summarize and explain some new approaches, including recent developments and challenges in the high-dimensional setting.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"20 14\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-040722-043616\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-040722-043616","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The issues caused by measurement errors have been recognized for almost 90 years, and research in this area has flourished since the 1980s. We review some of the classical methods in both density estimation and regression problems with measurement errors. In both problems, we consider when the original error-free model is parametric, nonparametric, and semiparametric, in combination with different error types. We also summarize and explain some new approaches, including recent developments and challenges in the high-dimensional setting.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.