{"title":"量子霍尔态之间的自旋选择性跃迁","authors":"Hrvoje Buljan, Zhigang Chen","doi":"10.1038/s41566-023-01288-9","DOIUrl":null,"url":null,"abstract":"Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 10","pages":"838-840"},"PeriodicalIF":32.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-selective transitions between quantum Hall states\",\"authors\":\"Hrvoje Buljan, Zhigang Chen\",\"doi\":\"10.1038/s41566-023-01288-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"17 10\",\"pages\":\"838-840\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-023-01288-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-023-01288-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Spin-selective transitions between quantum Hall states
Platforms enabling control over strong light–matter interactions in optical cavities provide a challenging but promising way to manipulate emergent light–matter hybrids. Spin selectivity of transitions has now been demonstrated in a two-dimensional hole gas microcavity system, paving the way towards the study of new spin physics phenomena in hybrid excitations.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.