Yongqiang Du , Xun Zhu , Xin Hua , Zhengeng Zhao , Xiao Hu , Yi Qian , Xi Xiao , Kejin Wei
{"title":"用于偏振编码量子密钥分配的硅基解码器","authors":"Yongqiang Du , Xun Zhu , Xin Hua , Zhengeng Zhao , Xiao Hu , Yi Qian , Xi Xiao , Kejin Wei","doi":"10.1016/j.chip.2023.100039","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Silicon-based polarization-encoding quantum key distribution (QKD) has been extensively studied due to its advantageous characteristics of its low cost and robustness. However, given the difficulty of fabricating polarized independent components on the chip, previous studies have only adopted off-chip devices to demodulate the quantum states or perform polarization compensation. In the current work, a fully chip-based decoder for polarization-encoding QKD was proposed. The chip realized a polarization state analyzer and compensated for the BB84 protocol without the requirement of additional hardware, which was based on a polarization-to-path conversion method utilizing a polarization splitter-rotator. The chip was fabricated adopting a standard silicon photonics foundry, which was of a compact design and suitable for mass production. In the experimental stability test, an average quantum bit error rate of</strong> <span><math><mrow><mn>0.59</mn><mo>%</mo></mrow></math></span> <strong>was achieved through continuous operation for 10 h without any polarization feedback. Furthermore, the chip enabled the automatic compensation of the fiber polarization drift when utilizing the developed feedback algorithm, which was emulated by a random fiber polarization scrambler. Moreover, a finite-key secret rate of 240 bps over a fiber spool of 100 km was achieved in the case of the QKD demonstration. This study marks an important step toward the integrated, practical, and large-scale deployment of QKD systems.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 1","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Silicon-based decoder for polarization-encoding quantum key distribution\",\"authors\":\"Yongqiang Du , Xun Zhu , Xin Hua , Zhengeng Zhao , Xiao Hu , Yi Qian , Xi Xiao , Kejin Wei\",\"doi\":\"10.1016/j.chip.2023.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>Silicon-based polarization-encoding quantum key distribution (QKD) has been extensively studied due to its advantageous characteristics of its low cost and robustness. However, given the difficulty of fabricating polarized independent components on the chip, previous studies have only adopted off-chip devices to demodulate the quantum states or perform polarization compensation. In the current work, a fully chip-based decoder for polarization-encoding QKD was proposed. The chip realized a polarization state analyzer and compensated for the BB84 protocol without the requirement of additional hardware, which was based on a polarization-to-path conversion method utilizing a polarization splitter-rotator. The chip was fabricated adopting a standard silicon photonics foundry, which was of a compact design and suitable for mass production. In the experimental stability test, an average quantum bit error rate of</strong> <span><math><mrow><mn>0.59</mn><mo>%</mo></mrow></math></span> <strong>was achieved through continuous operation for 10 h without any polarization feedback. Furthermore, the chip enabled the automatic compensation of the fiber polarization drift when utilizing the developed feedback algorithm, which was emulated by a random fiber polarization scrambler. Moreover, a finite-key secret rate of 240 bps over a fiber spool of 100 km was achieved in the case of the QKD demonstration. This study marks an important step toward the integrated, practical, and large-scale deployment of QKD systems.</strong></p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"2 1\",\"pages\":\"Article 100039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472323000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon-based decoder for polarization-encoding quantum key distribution
Silicon-based polarization-encoding quantum key distribution (QKD) has been extensively studied due to its advantageous characteristics of its low cost and robustness. However, given the difficulty of fabricating polarized independent components on the chip, previous studies have only adopted off-chip devices to demodulate the quantum states or perform polarization compensation. In the current work, a fully chip-based decoder for polarization-encoding QKD was proposed. The chip realized a polarization state analyzer and compensated for the BB84 protocol without the requirement of additional hardware, which was based on a polarization-to-path conversion method utilizing a polarization splitter-rotator. The chip was fabricated adopting a standard silicon photonics foundry, which was of a compact design and suitable for mass production. In the experimental stability test, an average quantum bit error rate ofwas achieved through continuous operation for 10 h without any polarization feedback. Furthermore, the chip enabled the automatic compensation of the fiber polarization drift when utilizing the developed feedback algorithm, which was emulated by a random fiber polarization scrambler. Moreover, a finite-key secret rate of 240 bps over a fiber spool of 100 km was achieved in the case of the QKD demonstration. This study marks an important step toward the integrated, practical, and large-scale deployment of QKD systems.