范德华铁电晶体管:用于高精度神经形态计算的全方位人工突触

Chip Pub Date : 2023-06-01 DOI:10.1016/j.chip.2023.100044
Zhongwang Wang , Xuefan Zhou , Xiaochi Liu , Aocheng Qiu , Caifang Gao , Yahua Yuan , Yumei Jing , Dou Zhang , Wenwu Li , Hang Luo , Junhao Chu , Jian Sun
{"title":"范德华铁电晶体管:用于高精度神经形态计算的全方位人工突触","authors":"Zhongwang Wang ,&nbsp;Xuefan Zhou ,&nbsp;Xiaochi Liu ,&nbsp;Aocheng Qiu ,&nbsp;Caifang Gao ,&nbsp;Yahua Yuan ,&nbsp;Yumei Jing ,&nbsp;Dou Zhang ,&nbsp;Wenwu Li ,&nbsp;Hang Luo ,&nbsp;Junhao Chu ,&nbsp;Jian Sun","doi":"10.1016/j.chip.2023.100044","DOIUrl":null,"url":null,"abstract":"<div><p><strong>State number, operation power, dynamic range and conductance weight update linearity are key synaptic device performance metrics for high-accuracy and low-power-consumption neuromorphic computing in hardware. However, high linearity and low power consumption couldn't be simultaneously achieved by most of the reported synaptic devices, which limits the performance of the hardware. This work demonstrates van der Waals (vdW) stacked ferroelectric field-effect transistors (FeFET) with single-crystalline ferroelectric nanoflakes. Ferroelectrics are of fine vdW interface and partial polarization switching of multi-domains under electric field pulses, which makes the FeFETs exhibit multi-state memory characteristics and excellent synaptic plasticity. They also exhibit a desired linear conductance weight update with 128 conductance states, a sufficiently high dynamic range of</strong> <em><strong>G</strong></em><sub><strong>max</strong></sub><strong>/</strong><em><strong>G</strong></em><sub><strong>min</strong></sub> <strong>&gt; 120, and a low power consumption of 10 fJ/spike using identical pulses. Based on such an all-round device, a two-layer artificial neural network was built to conduct Modified National Institute of Standards and Technology (MNIST) digital numbers and electrocardiogram (ECG) pattern-recognition simulations, with the high accuracies reaching 97.6% and 92.4%, respectively. The remarkable performance demonstrates that vdW-FeFET is of obvious advantages in high-precision neuromorphic computing applications.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 2","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals ferroelectric transistors: the all-round artificial synapses for high-precision neuromorphic computing\",\"authors\":\"Zhongwang Wang ,&nbsp;Xuefan Zhou ,&nbsp;Xiaochi Liu ,&nbsp;Aocheng Qiu ,&nbsp;Caifang Gao ,&nbsp;Yahua Yuan ,&nbsp;Yumei Jing ,&nbsp;Dou Zhang ,&nbsp;Wenwu Li ,&nbsp;Hang Luo ,&nbsp;Junhao Chu ,&nbsp;Jian Sun\",\"doi\":\"10.1016/j.chip.2023.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>State number, operation power, dynamic range and conductance weight update linearity are key synaptic device performance metrics for high-accuracy and low-power-consumption neuromorphic computing in hardware. However, high linearity and low power consumption couldn't be simultaneously achieved by most of the reported synaptic devices, which limits the performance of the hardware. This work demonstrates van der Waals (vdW) stacked ferroelectric field-effect transistors (FeFET) with single-crystalline ferroelectric nanoflakes. Ferroelectrics are of fine vdW interface and partial polarization switching of multi-domains under electric field pulses, which makes the FeFETs exhibit multi-state memory characteristics and excellent synaptic plasticity. They also exhibit a desired linear conductance weight update with 128 conductance states, a sufficiently high dynamic range of</strong> <em><strong>G</strong></em><sub><strong>max</strong></sub><strong>/</strong><em><strong>G</strong></em><sub><strong>min</strong></sub> <strong>&gt; 120, and a low power consumption of 10 fJ/spike using identical pulses. Based on such an all-round device, a two-layer artificial neural network was built to conduct Modified National Institute of Standards and Technology (MNIST) digital numbers and electrocardiogram (ECG) pattern-recognition simulations, with the high accuracies reaching 97.6% and 92.4%, respectively. The remarkable performance demonstrates that vdW-FeFET is of obvious advantages in high-precision neuromorphic computing applications.</strong></p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"2 2\",\"pages\":\"Article 100044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472323000072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

状态数、操作功率、动态范围和电导权重更新线性度是硬件中高精度和低功耗神经形态计算的关键突触设备性能指标。然而,大多数报道的突触器件不能同时实现高线性和低功耗,这限制了硬件的性能。这项工作展示了具有单晶铁电纳米片的范德华(vdW)堆叠铁电场效应晶体管(FeFET)。铁电体具有精细的vdW界面和在电场脉冲下多畴的部分极化开关,这使得FeFET表现出多状态记忆特性和优异的突触可塑性。它们还表现出具有128个电导状态、Gmax/Gmin>;120以及使用相同脉冲的10fJ/尖峰的低功耗。基于这种全方位的设备,构建了一个双层人工神经网络,对修改后的国家标准与技术研究所(MNIST)数字数字和心电图模式识别进行模拟,高准确率分别达到97.6%和92.4%。显著的性能表明,vdW-FeFET在高精度神经形态计算应用中具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Van der Waals ferroelectric transistors: the all-round artificial synapses for high-precision neuromorphic computing

State number, operation power, dynamic range and conductance weight update linearity are key synaptic device performance metrics for high-accuracy and low-power-consumption neuromorphic computing in hardware. However, high linearity and low power consumption couldn't be simultaneously achieved by most of the reported synaptic devices, which limits the performance of the hardware. This work demonstrates van der Waals (vdW) stacked ferroelectric field-effect transistors (FeFET) with single-crystalline ferroelectric nanoflakes. Ferroelectrics are of fine vdW interface and partial polarization switching of multi-domains under electric field pulses, which makes the FeFETs exhibit multi-state memory characteristics and excellent synaptic plasticity. They also exhibit a desired linear conductance weight update with 128 conductance states, a sufficiently high dynamic range of Gmax/Gmin > 120, and a low power consumption of 10 fJ/spike using identical pulses. Based on such an all-round device, a two-layer artificial neural network was built to conduct Modified National Institute of Standards and Technology (MNIST) digital numbers and electrocardiogram (ECG) pattern-recognition simulations, with the high accuracies reaching 97.6% and 92.4%, respectively. The remarkable performance demonstrates that vdW-FeFET is of obvious advantages in high-precision neuromorphic computing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1