学习任务的信息复杂性、结构和距离

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-03-01 DOI:10.1093/imaiai/iaaa033
Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto
{"title":"学习任务的信息复杂性、结构和距离","authors":"Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto","doi":"10.1093/imaiai/iaaa033","DOIUrl":null,"url":null,"abstract":"We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa033","citationCount":"40","resultStr":"{\"title\":\"The information complexity of learning tasks, their structure and their distance\",\"authors\":\"Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto\",\"doi\":\"10.1093/imaiai/iaaa033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa033\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9432987/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9432987/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 40

摘要

我们引入了学习任务空间中的非对称距离,以及计算其复杂性的框架。这些概念是迁移学习实践的基础,通过迁移学习,参数模型被预先训练用于一项任务,然后被微调用于另一项任务。我们开发的框架是非渐进的,捕获了训练数据集的有限性质,并允许区分学习和记忆。作为特例,它包含了来自Kolmogorov复杂性和Shannon和Fisher信息的经典概念。然而,与其中一些框架不同,它可以应用于大规模模型和真实世界的数据集。我们的框架是第一个以考虑优化方案效果的方式来衡量复杂性的框架,这在深度学习中至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The information complexity of learning tasks, their structure and their distance
We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1