近碰撞点源的超分辨率

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2020-10-01 DOI:10.1093/imaiai/iaaa005
Dmitry Batenkov;Gil Goldman;Yosef Yomdin
{"title":"近碰撞点源的超分辨率","authors":"Dmitry Batenkov;Gil Goldman;Yosef Yomdin","doi":"10.1093/imaiai/iaaa005","DOIUrl":null,"url":null,"abstract":"We consider the problem of stable recovery of sparse signals of the form \n<tex>$$\\begin{equation*}F(x)=\\sum_{j=1}^d a_j\\delta(x-x_j),\\quad x_j\\in\\mathbb{R},\\;a_j\\in\\mathbb{C}, \\end{equation*}$$</tex>\n from their spectral measurements, known in a bandwidth \n<tex>$\\varOmega $</tex>\n with absolute error not exceeding \n<tex>$\\epsilon&gt;0$</tex>\n. We consider the case when at most \n<tex>$p\\leqslant d$</tex>\n nodes \n<tex>$\\{x_j\\}$</tex>\n of \n<tex>$F$</tex>\n form a cluster whose extent is smaller than the Rayleigh limit \n<tex>${1\\over \\varOmega }$</tex>\n, while the rest of the nodes is well separated. Provided that \n<tex>$\\epsilon \\lessapprox \\operatorname{SRF}^{-2p+1}$</tex>\n, where \n<tex>$\\operatorname{SRF}=(\\varOmega \\varDelta )^{-1}$</tex>\n and \n<tex>$\\varDelta $</tex>\n is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order \n<tex>${1\\over \\varOmega }\\operatorname{SRF}^{2p-1}\\epsilon $</tex>\n, while for recovering the corresponding amplitudes \n<tex>$\\{a_j\\}$</tex>\n the rate is of the order \n<tex>$\\operatorname{SRF}^{2p-1}\\epsilon $</tex>\n. Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are \n<tex>${\\epsilon \\over \\varOmega }$</tex>\n and \n<tex>$\\epsilon $</tex>\n, respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known matrix pencil method achieves the above accuracy bounds.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 1","pages":"515-572"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa005","citationCount":"48","resultStr":"{\"title\":\"Super-resolution of near-colliding point sources\",\"authors\":\"Dmitry Batenkov;Gil Goldman;Yosef Yomdin\",\"doi\":\"10.1093/imaiai/iaaa005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of stable recovery of sparse signals of the form \\n<tex>$$\\\\begin{equation*}F(x)=\\\\sum_{j=1}^d a_j\\\\delta(x-x_j),\\\\quad x_j\\\\in\\\\mathbb{R},\\\\;a_j\\\\in\\\\mathbb{C}, \\\\end{equation*}$$</tex>\\n from their spectral measurements, known in a bandwidth \\n<tex>$\\\\varOmega $</tex>\\n with absolute error not exceeding \\n<tex>$\\\\epsilon&gt;0$</tex>\\n. We consider the case when at most \\n<tex>$p\\\\leqslant d$</tex>\\n nodes \\n<tex>$\\\\{x_j\\\\}$</tex>\\n of \\n<tex>$F$</tex>\\n form a cluster whose extent is smaller than the Rayleigh limit \\n<tex>${1\\\\over \\\\varOmega }$</tex>\\n, while the rest of the nodes is well separated. Provided that \\n<tex>$\\\\epsilon \\\\lessapprox \\\\operatorname{SRF}^{-2p+1}$</tex>\\n, where \\n<tex>$\\\\operatorname{SRF}=(\\\\varOmega \\\\varDelta )^{-1}$</tex>\\n and \\n<tex>$\\\\varDelta $</tex>\\n is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order \\n<tex>${1\\\\over \\\\varOmega }\\\\operatorname{SRF}^{2p-1}\\\\epsilon $</tex>\\n, while for recovering the corresponding amplitudes \\n<tex>$\\\\{a_j\\\\}$</tex>\\n the rate is of the order \\n<tex>$\\\\operatorname{SRF}^{2p-1}\\\\epsilon $</tex>\\n. Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are \\n<tex>${\\\\epsilon \\\\over \\\\varOmega }$</tex>\\n and \\n<tex>$\\\\epsilon $</tex>\\n, respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known matrix pencil method achieves the above accuracy bounds.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"10 1\",\"pages\":\"515-572\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa005\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514690/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514690/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 48

摘要

我们考虑形式为$$\beart{方程*}F(x)=\sum_{j=1}^d a_j\delta(x-x_j),quad x_j\in\mathbb{R},\的稀疏信号的稳定恢复问题;a_j\in\mathbb{C},\end{方程*}$$来自它们的光谱测量,在带宽$\varOmega$中已知,绝对误差不超过$\epsilon>;0美元。我们考虑这样的情况,即$F$的最多$p\leqslant d$节点$\{x_j\}$形成一个范围小于瑞利极限${1\over\varOmega}$的簇,而其余节点则很好地分离。假设$\epsilon\lessapprox\operatorname{SRF}^{-2p+1}$,其中$\operatorname{SRF}=(\varOmega\varDelta)^{-1}$和$\varDelta$是节点之间的最小间隔,我们证明了簇节点重构的最小最大错误率为${1\over\varOmega}\operatorname{SRF}^{2p-1}\epsilon$,而对于恢复相应的振幅$\{a_j\}$,速率为$\运算符名称{SRF}^{2p-1}\ε$的阶。此外,非聚类节点和振幅的恢复的相应的最小-最大速率分别为${\epsilon\over\varOmega}$和$\epsilon$。这些结果表明,在比以前想象的更普遍的情况下,稳定的超分辨率是可能的。我们的数值实验表明,众所周知的矩阵笔方法达到了上述精度界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution of near-colliding point sources
We consider the problem of stable recovery of sparse signals of the form $$\begin{equation*}F(x)=\sum_{j=1}^d a_j\delta(x-x_j),\quad x_j\in\mathbb{R},\;a_j\in\mathbb{C}, \end{equation*}$$ from their spectral measurements, known in a bandwidth $\varOmega $ with absolute error not exceeding $\epsilon>0$ . We consider the case when at most $p\leqslant d$ nodes $\{x_j\}$ of $F$ form a cluster whose extent is smaller than the Rayleigh limit ${1\over \varOmega }$ , while the rest of the nodes is well separated. Provided that $\epsilon \lessapprox \operatorname{SRF}^{-2p+1}$ , where $\operatorname{SRF}=(\varOmega \varDelta )^{-1}$ and $\varDelta $ is the minimal separation between the nodes, we show that the minimax error rate for reconstruction of the cluster nodes is of order ${1\over \varOmega }\operatorname{SRF}^{2p-1}\epsilon $ , while for recovering the corresponding amplitudes $\{a_j\}$ the rate is of the order $\operatorname{SRF}^{2p-1}\epsilon $ . Moreover, the corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are ${\epsilon \over \varOmega }$ and $\epsilon $ , respectively. These results suggest that stable super-resolution is possible in much more general situations than previously thought. Our numerical experiments show that the well-known matrix pencil method achieves the above accuracy bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1