经济Co(III)配合物质子继电器介导电催化析氢

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Electrocatalysis Pub Date : 2023-04-19 DOI:10.1007/s12678-023-00823-0
D. Majumder, S. Kolay, V. S. Tripathi
{"title":"经济Co(III)配合物质子继电器介导电催化析氢","authors":"D. Majumder,&nbsp;S. Kolay,&nbsp;V. S. Tripathi","doi":"10.1007/s12678-023-00823-0","DOIUrl":null,"url":null,"abstract":"<div><p>Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to Co<sup>I</sup>/Co<sup>0</sup> reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 4","pages":"602 - 610"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00823-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex\",\"authors\":\"D. Majumder,&nbsp;S. Kolay,&nbsp;V. S. Tripathi\",\"doi\":\"10.1007/s12678-023-00823-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to Co<sup>I</sup>/Co<sup>0</sup> reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"14 4\",\"pages\":\"602 - 610\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12678-023-00823-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00823-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00823-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对二(亚氨基二乙酸)钴酸酯(III)配合物的电催化质子还原性能进行了评价。在DMF/水(9:1 v/v)介质中加入弱酸后,该过程遵循罕见的配体质子化途径。因此,络合物只有在酸的存在下才具有电活性。在弱酸存在下,观察到与CoI/Co0还原相对应的新的还原峰。该峰显示了质子还原反应的电催化活性。建立了配体上质子接力启动的电化学-化学-电化学(ECE)电催化过程。通过控制电位电解、周转率(TON)和周转率(TOF)评价该配合物在DMF/水介质中的催化活性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex

Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to CoI/Co0 reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
期刊最新文献
A Molecularly Imprinted Composite-based Novel Electrochemical Sensor Using o-Phenylenediamine, Molybdenum Nanoparticle, and Multiwalled Carbon Nanotube for Triclosan Detection from Water Cu2(V2O7)-rGO Engineered Sensor for the Electrochemical Determination of Antipsychotic drug, Pimozide ​Study of Fabrication and Properties of NiCoP Nanocrystalline Thin Film Electrodes for Hydrogen Evolution Electrocatalysts​ Green Synthesis of Cobalt Oxide Decorated Chitosan Substrates for Electrochemical Detection of Nitrite and Hydrogen Evolution Reactions Manganese Oxide Applications in Sulfonamides Electrochemical, Thermal and Optical Sensors: A Short Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1