走向无缝定位:使用UWB可穿戴系统和卷积神经网络的态势感知

Ghazaleh Kia;David Plets;Ben Van Herbruggen;Eli De Poorter;Jukka Talvitie
{"title":"走向无缝定位:使用UWB可穿戴系统和卷积神经网络的态势感知","authors":"Ghazaleh Kia;David Plets;Ben Van Herbruggen;Eli De Poorter;Jukka Talvitie","doi":"10.1109/JISPIN.2023.3275118","DOIUrl":null,"url":null,"abstract":"Depending on the environment, an increasing number of localization methods are available ranging from satellite-based localization to visual navigation, each with its own advantages and disadvantages. Fast and reliable identification of the environment characteristics is crucial for selecting the best available localization method. This research introduces a deep-learning-based method utilizing data collected with wearable ultra-wideband devices. A novel approach mimicking radar behavior is presented to collect the relevant data. Channel state information is proposed for training of the neural network and enabling the environment detection to obtain the desired situational awareness. The proposed detection approach is evaluated in three types of environments: 1) indoor, 2) open outdoor, and 3) crowded urban. The results show that fast and accurate environment detection for seamless localization purposes can be achieved with a precision of 91% for general scenarios and a precision of 96% for specific use cases.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"12-25"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9955032/9962767/10122970.pdf","citationCount":"0","resultStr":"{\"title\":\"Toward Seamless Localization: Situational Awareness Using UWB Wearable Systems and Convolutional Neural Networks\",\"authors\":\"Ghazaleh Kia;David Plets;Ben Van Herbruggen;Eli De Poorter;Jukka Talvitie\",\"doi\":\"10.1109/JISPIN.2023.3275118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on the environment, an increasing number of localization methods are available ranging from satellite-based localization to visual navigation, each with its own advantages and disadvantages. Fast and reliable identification of the environment characteristics is crucial for selecting the best available localization method. This research introduces a deep-learning-based method utilizing data collected with wearable ultra-wideband devices. A novel approach mimicking radar behavior is presented to collect the relevant data. Channel state information is proposed for training of the neural network and enabling the environment detection to obtain the desired situational awareness. The proposed detection approach is evaluated in three types of environments: 1) indoor, 2) open outdoor, and 3) crowded urban. The results show that fast and accurate environment detection for seamless localization purposes can be achieved with a precision of 91% for general scenarios and a precision of 96% for specific use cases.\",\"PeriodicalId\":100621,\"journal\":{\"name\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"volume\":\"1 \",\"pages\":\"12-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9955032/9962767/10122970.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10122970/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10122970/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据环境的不同,越来越多的定位方法可用,从基于卫星的定位到视觉导航,每种方法都有自己的优点和缺点。快速可靠地识别环境特征对于选择最佳可用的定位方法至关重要。本研究介绍了一种基于深度学习的方法,该方法利用可穿戴超宽带设备收集的数据。提出了一种模拟雷达行为的新方法来收集相关数据。信道状态信息被提出用于训练神经网络,并使环境检测能够获得所需的态势感知。所提出的检测方法在三种类型的环境中进行了评估:1)室内,2)露天,3)拥挤的城市。结果表明,用于无缝定位目的的快速准确的环境检测可以实现,一般场景的精度为91%,特定用例的精度为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Seamless Localization: Situational Awareness Using UWB Wearable Systems and Convolutional Neural Networks
Depending on the environment, an increasing number of localization methods are available ranging from satellite-based localization to visual navigation, each with its own advantages and disadvantages. Fast and reliable identification of the environment characteristics is crucial for selecting the best available localization method. This research introduces a deep-learning-based method utilizing data collected with wearable ultra-wideband devices. A novel approach mimicking radar behavior is presented to collect the relevant data. Channel state information is proposed for training of the neural network and enabling the environment detection to obtain the desired situational awareness. The proposed detection approach is evaluated in three types of environments: 1) indoor, 2) open outdoor, and 3) crowded urban. The results show that fast and accurate environment detection for seamless localization purposes can be achieved with a precision of 91% for general scenarios and a precision of 96% for specific use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1