菌根类型影响森林氮的有效性,与有机质质量无关

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2023-10-04 DOI:10.1007/s10533-023-01087-y
Chikae Tatsumi, Takeshi Taniguchi, Fujio Hyodo, Sheng Du, Norikazu Yamanaka, Ryunosuke Tateno
{"title":"菌根类型影响森林氮的有效性,与有机质质量无关","authors":"Chikae Tatsumi,&nbsp;Takeshi Taniguchi,&nbsp;Fujio Hyodo,&nbsp;Sheng Du,&nbsp;Norikazu Yamanaka,&nbsp;Ryunosuke Tateno","doi":"10.1007/s10533-023-01087-y","DOIUrl":null,"url":null,"abstract":"<div><p>Forest mycorrhizal type is getting more attention as a potentially significant factor controlling carbon (C) and nitrogen (N) cycling. Ectomycorrhizal (ECM) forests are frequently reported to have lower N availability and higher soil C storage than arbuscular mycorrhizal (AM) forests. However, it is still unclear whether such characteristics stem from the low organic matter quality inherent in the ECM forest or other biotic and abiotic factors, such as competition for N between ECM fungi and free-living microbes. We conducted soil and litter reciprocal transplant experiments between AM-symbiotic black locust and ECM-symbiotic oak forests to separate the effects of organic matter quality and forest type (i.e., factors including ECM fungal presence and soil physicochemical properties) on decomposition rates and N availability. We hypothesized that the forest type, rather than organic matter quality, is a more determinant factor for available N content but not organic matter decomposition rate. Forest type had a more substantial effect not only on nitrate content but also on decomposition rate than organic matter quality. Since the litter decomposition rate was higher when placed in the oak forest, the higher soil C accumulation in the oak than in the black locust forests may be caused by greater C input rather than the slower decomposition in the oak than black locust forest. In addition, nitrate content was determined by forest type, suggesting the suppression of nitrate content by ECM fungal presence. This study suggests that the forest type with different mycorrhizal associations can affect biogeochemical cycling independent of organic matter quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01087-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Mycorrhizal type affects forest nitrogen availability, independent of organic matter quality\",\"authors\":\"Chikae Tatsumi,&nbsp;Takeshi Taniguchi,&nbsp;Fujio Hyodo,&nbsp;Sheng Du,&nbsp;Norikazu Yamanaka,&nbsp;Ryunosuke Tateno\",\"doi\":\"10.1007/s10533-023-01087-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forest mycorrhizal type is getting more attention as a potentially significant factor controlling carbon (C) and nitrogen (N) cycling. Ectomycorrhizal (ECM) forests are frequently reported to have lower N availability and higher soil C storage than arbuscular mycorrhizal (AM) forests. However, it is still unclear whether such characteristics stem from the low organic matter quality inherent in the ECM forest or other biotic and abiotic factors, such as competition for N between ECM fungi and free-living microbes. We conducted soil and litter reciprocal transplant experiments between AM-symbiotic black locust and ECM-symbiotic oak forests to separate the effects of organic matter quality and forest type (i.e., factors including ECM fungal presence and soil physicochemical properties) on decomposition rates and N availability. We hypothesized that the forest type, rather than organic matter quality, is a more determinant factor for available N content but not organic matter decomposition rate. Forest type had a more substantial effect not only on nitrate content but also on decomposition rate than organic matter quality. Since the litter decomposition rate was higher when placed in the oak forest, the higher soil C accumulation in the oak than in the black locust forests may be caused by greater C input rather than the slower decomposition in the oak than black locust forest. In addition, nitrate content was determined by forest type, suggesting the suppression of nitrate content by ECM fungal presence. This study suggests that the forest type with different mycorrhizal associations can affect biogeochemical cycling independent of organic matter quality.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-023-01087-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-023-01087-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01087-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

森林菌根类型作为控制碳(C)和氮(N)循环的潜在重要因素越来越受到关注。据报道,外生菌根(ECM)林比丛枝菌根(AM)林具有更低的氮有效性和更高的土壤碳储量。然而,目前尚不清楚这些特征是源于ECM森林固有的低有机质质量,还是其他生物和非生物因素,如ECM真菌和自由生活微生物之间的氮竞争。我们在AM共生黑蝗虫和ECM共生橡树林之间进行了土壤和枯枝落叶相互移植实验,以分离有机质质量和森林类型(即ECM真菌存在和土壤理化性质等因素)对分解速率和氮有效性的影响。我们假设,森林类型而不是有机质质量是有效氮含量的决定因素,但不是有机质分解率的决定因素。与有机质质量相比,森林类型不仅对硝酸盐含量,而且对分解速率的影响更大。由于放置在橡树林中的枯枝落叶分解率较高,橡树林中土壤碳积累高于黑槐林,这可能是由于碳输入较大,而不是橡树林中分解速度较慢。此外,硝酸盐含量是由森林类型决定的,这表明ECM真菌的存在抑制了硝酸盐含量。这项研究表明,具有不同菌根组合的森林类型可以独立于有机质质量影响生物地球化学循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycorrhizal type affects forest nitrogen availability, independent of organic matter quality

Forest mycorrhizal type is getting more attention as a potentially significant factor controlling carbon (C) and nitrogen (N) cycling. Ectomycorrhizal (ECM) forests are frequently reported to have lower N availability and higher soil C storage than arbuscular mycorrhizal (AM) forests. However, it is still unclear whether such characteristics stem from the low organic matter quality inherent in the ECM forest or other biotic and abiotic factors, such as competition for N between ECM fungi and free-living microbes. We conducted soil and litter reciprocal transplant experiments between AM-symbiotic black locust and ECM-symbiotic oak forests to separate the effects of organic matter quality and forest type (i.e., factors including ECM fungal presence and soil physicochemical properties) on decomposition rates and N availability. We hypothesized that the forest type, rather than organic matter quality, is a more determinant factor for available N content but not organic matter decomposition rate. Forest type had a more substantial effect not only on nitrate content but also on decomposition rate than organic matter quality. Since the litter decomposition rate was higher when placed in the oak forest, the higher soil C accumulation in the oak than in the black locust forests may be caused by greater C input rather than the slower decomposition in the oak than black locust forest. In addition, nitrate content was determined by forest type, suggesting the suppression of nitrate content by ECM fungal presence. This study suggests that the forest type with different mycorrhizal associations can affect biogeochemical cycling independent of organic matter quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Regional differences in soil stable isotopes and vibrational features at depth in three California grasslands High spatial variability in wetland methane fluxes is tied to vegetation patch types Calcium sorption and isotope fractionation in Bacillus subtilis and Pseudomonas aeruginosa Forest types control the contribution of litter and roots to labile and persistent soil organic carbon Response of Fe(III)-reducing kinetics, microbial community structure and Fe(III)-related functional genes to Fe(III)-organic matter complexes and ferrihydrite in lake sediment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1