Ariel G. Benvenuto, Román H. Buitrago, Javier A. Schmidt
{"title":"三氯硅烷在玻璃上沉积掺杂多晶硅薄膜**","authors":"Ariel G. Benvenuto, Román H. Buitrago, Javier A. Schmidt","doi":"10.1002/cvde.201407139","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl<sub>3</sub> as a precursor, H<sub>2</sub> as a carrier and reaction gas, BBr<sub>3</sub> as a <i>p</i>-type doping agent, and PCl<sub>3</sub> as a <i>n</i>-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the <i>p</i>-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the <i>n</i>-doped samples lack columnar structure or preferential orientation. RS and UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, <i>p</i>-type or <i>n</i>-type. Activation energies between 0.61 and ∼0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of <i>V</i><sub>OC</sub>(∼507 mV) and <i>J</i><sub>SC</sub> (∼29.6 mA cm<sup>−2</sup>) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 1-2-3","pages":"54-62"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407139","citationCount":"3","resultStr":"{\"title\":\"Doped Polycrystalline Silicon Thin Films Deposited on Glass from Trichlorosilane**\",\"authors\":\"Ariel G. Benvenuto, Román H. Buitrago, Javier A. Schmidt\",\"doi\":\"10.1002/cvde.201407139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl<sub>3</sub> as a precursor, H<sub>2</sub> as a carrier and reaction gas, BBr<sub>3</sub> as a <i>p</i>-type doping agent, and PCl<sub>3</sub> as a <i>n</i>-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the <i>p</i>-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the <i>n</i>-doped samples lack columnar structure or preferential orientation. RS and UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, <i>p</i>-type or <i>n</i>-type. Activation energies between 0.61 and ∼0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of <i>V</i><sub>OC</sub>(∼507 mV) and <i>J</i><sub>SC</sub> (∼29.6 mA cm<sup>−2</sup>) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"21 1-2-3\",\"pages\":\"54-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201407139\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Doped Polycrystalline Silicon Thin Films Deposited on Glass from Trichlorosilane**
Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl3 as a precursor, H2 as a carrier and reaction gas, BBr3 as a p-type doping agent, and PCl3 as a n-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the p-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the n-doped samples lack columnar structure or preferential orientation. RS and UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, p-type or n-type. Activation energies between 0.61 and ∼0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of VOC(∼507 mV) and JSC (∼29.6 mA cm−2) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.