{"title":"二硫化钼基二维材料的CVD生长","authors":"H. F. Liu, S. L. Wong, D. Z. Chi","doi":"10.1002/cvde.201500060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>The ‘<i>self-limiting</i>’ character of graphene growth on the surface of metals such as Ni and Cu makes CVD the natural choice for growing large-area and continuous graphene films. Beyond graphene, absence of the self-limiting property results in a challenge to achieving large-area, high-quality two-dimensional (2D) crystals by CVD. Recent studies of structural, optical, and electrical properties of MoS<sub>2</sub>-based atomic layers grown by CVD are reviewed, concluding that thermal vapor deposition will outperform thermal vapor sulfurization in producing the required materials. Whether gaseous sources will replace the now dominant solid sources in direct deposition methods is an open issue. The latest progression in various CVD techniques used in MoS<sub>2</sub> growth and their resultant products are discussed and compared.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"241-259"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201500060","citationCount":"143","resultStr":"{\"title\":\"CVD Growth of MoS2-based Two-dimensional Materials\",\"authors\":\"H. F. Liu, S. L. Wong, D. Z. Chi\",\"doi\":\"10.1002/cvde.201500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <p>The ‘<i>self-limiting</i>’ character of graphene growth on the surface of metals such as Ni and Cu makes CVD the natural choice for growing large-area and continuous graphene films. Beyond graphene, absence of the self-limiting property results in a challenge to achieving large-area, high-quality two-dimensional (2D) crystals by CVD. Recent studies of structural, optical, and electrical properties of MoS<sub>2</sub>-based atomic layers grown by CVD are reviewed, concluding that thermal vapor deposition will outperform thermal vapor sulfurization in producing the required materials. Whether gaseous sources will replace the now dominant solid sources in direct deposition methods is an open issue. The latest progression in various CVD techniques used in MoS<sub>2</sub> growth and their resultant products are discussed and compared.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"21 10-11-12\",\"pages\":\"241-259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201500060\",\"citationCount\":\"143\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201500060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201500060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CVD Growth of MoS2-based Two-dimensional Materials
The ‘self-limiting’ character of graphene growth on the surface of metals such as Ni and Cu makes CVD the natural choice for growing large-area and continuous graphene films. Beyond graphene, absence of the self-limiting property results in a challenge to achieving large-area, high-quality two-dimensional (2D) crystals by CVD. Recent studies of structural, optical, and electrical properties of MoS2-based atomic layers grown by CVD are reviewed, concluding that thermal vapor deposition will outperform thermal vapor sulfurization in producing the required materials. Whether gaseous sources will replace the now dominant solid sources in direct deposition methods is an open issue. The latest progression in various CVD techniques used in MoS2 growth and their resultant products are discussed and compared.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.