{"title":"液滴汽化在液体脉冲CVD设计和运行中的数值模拟","authors":"Raphaël Boichot, Susan Krumdieck","doi":"10.1002/cvde.201507191","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>This article presents an approach for modeling the vaporization of droplets of solvent and precursor mixture under vacuum in the pulsed-pressure (pp) CVD process. The pulsed, direct liquid injection apparatus with ultrasonic atomizer is demonstrated as a controllable and reliable alternative to the bubbler and carrier gas system. The numerical modeling solves mass, heat, and momentum continuity equations on liquid droplets, and is intended to evaluate the relative roles of the physical chemistry properties and reactor parameters in the fast vaporization of droplets. The sensitivity analysis proposed here shows that the vaporization time into the pulsed-liquid CVD system is mainly dependent on the heating available in the flash evaporation zone, then on the thermodynamic properties of the liquid solution.</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"21 10-11-12","pages":"375-384"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201507191","citationCount":"4","resultStr":"{\"title\":\"Numerical Modeling of the Droplet Vaporization for Design and Operation of Liquid-pulsed CVD†\",\"authors\":\"Raphaël Boichot, Susan Krumdieck\",\"doi\":\"10.1002/cvde.201507191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>This article presents an approach for modeling the vaporization of droplets of solvent and precursor mixture under vacuum in the pulsed-pressure (pp) CVD process. The pulsed, direct liquid injection apparatus with ultrasonic atomizer is demonstrated as a controllable and reliable alternative to the bubbler and carrier gas system. The numerical modeling solves mass, heat, and momentum continuity equations on liquid droplets, and is intended to evaluate the relative roles of the physical chemistry properties and reactor parameters in the fast vaporization of droplets. The sensitivity analysis proposed here shows that the vaporization time into the pulsed-liquid CVD system is mainly dependent on the heating available in the flash evaporation zone, then on the thermodynamic properties of the liquid solution.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10093,\"journal\":{\"name\":\"Chemical Vapor Deposition\",\"volume\":\"21 10-11-12\",\"pages\":\"375-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cvde.201507191\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Vapor Deposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201507191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201507191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Modeling of the Droplet Vaporization for Design and Operation of Liquid-pulsed CVD†
This article presents an approach for modeling the vaporization of droplets of solvent and precursor mixture under vacuum in the pulsed-pressure (pp) CVD process. The pulsed, direct liquid injection apparatus with ultrasonic atomizer is demonstrated as a controllable and reliable alternative to the bubbler and carrier gas system. The numerical modeling solves mass, heat, and momentum continuity equations on liquid droplets, and is intended to evaluate the relative roles of the physical chemistry properties and reactor parameters in the fast vaporization of droplets. The sensitivity analysis proposed here shows that the vaporization time into the pulsed-liquid CVD system is mainly dependent on the heating available in the flash evaporation zone, then on the thermodynamic properties of the liquid solution.
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.