{"title":"大空腔介孔中空生物活性玻璃纳米球的溶胶-凝胶合成、性能及蛋白质负载/递送能力","authors":"Ahmed El-Fiqi","doi":"10.1007/s11706-022-0608-6","DOIUrl":null,"url":null,"abstract":"<div><p>Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted sol—gel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ∼43 nm in diameter and mesoporous shell of ∼37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (∼570 mg of Cyto <i>c</i> per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good <i>in vitro</i> capability of releasing calcium (Ca<sup>2+</sup>: 170 ppm) and silicate (SiO<sub>4</sub><sup>4−</sup>: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent <i>in vitro</i> growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sol—gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell\",\"authors\":\"Ahmed El-Fiqi\",\"doi\":\"10.1007/s11706-022-0608-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted sol—gel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ∼43 nm in diameter and mesoporous shell of ∼37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (∼570 mg of Cyto <i>c</i> per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good <i>in vitro</i> capability of releasing calcium (Ca<sup>2+</sup>: 170 ppm) and silicate (SiO<sub>4</sub><sup>4−</sup>: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent <i>in vitro</i> growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-022-0608-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0608-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Sol—gel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell
Hollow nanospheres exhibit unique properties and find a wide interest in several potential applications such as drug delivery. Herein, novel hollow bioactive glass nanospheres (HBGn) with large hollow cavity and large mesopores in their outer shells were synthesized by a simple and facile one-pot ultrasound assisted sol—gel method using PEG as the core soft-template. Interestingly, the produced HBGn exhibited large hollow cavity with ∼43 nm in diameter and mesoporous shell of ∼37 nm in thickness and 7 nm pore size along with nanosphere size around 117 nm. XPS confirmed the presence of Si and Ca elements at the surface of the HBGn outer shell. Notably, HBGn showed high protein loading capacity (∼570 mg of Cyto c per 1 g of HBGn) in addition to controlled protein release over 5 d. HBGn also demonstrated a good in vitro capability of releasing calcium (Ca2+: 170 ppm) and silicate (SiO44−: 78 ppm) ions in an aqueous medium over 2 weeks under physiological-like conditions. Excellent in vitro growth of bone-like hydroxyapatite nanocrystals was exhibited by HBGn during the soaking in SBF. A possible underlying mechanism involving the formation of spherical aggregates (coils) of PEG was proposed for the formation process of HBGn.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.