利用循环分析方法检测材料原子分辨率图像中的缺陷

Oleg S. Ovchinnikov, Andrew O’Hara, Stephen Jesse, Bethany M. Hudak, Shi‐Ze Yang, Andrew R. Lupini, Matthew F. Chisholm, Wu Zhou, Sergei V. Kalinin, Albina Y. Borisevich, Sokrates T. Pantelides
{"title":"利用循环分析方法检测材料原子分辨率图像中的缺陷","authors":"Oleg S. Ovchinnikov,&nbsp;Andrew O’Hara,&nbsp;Stephen Jesse,&nbsp;Bethany M. Hudak,&nbsp;Shi‐Ze Yang,&nbsp;Andrew R. Lupini,&nbsp;Matthew F. Chisholm,&nbsp;Wu Zhou,&nbsp;Sergei V. Kalinin,&nbsp;Albina Y. Borisevich,&nbsp;Sokrates T. Pantelides","doi":"10.1186/s40679-020-00070-x","DOIUrl":null,"url":null,"abstract":"<p>The automated detection of defects in high-angle annular dark-field <i>Z</i>-contrast (HAADF) scanning-transmission-electron microscopy (STEM) images has been a major challenge. Here, we report an approach for the automated detection and categorization of structural defects based on changes in the material’s local atomic geometry. The approach applies geometric graph theory to the already-found positions of atomic-column centers and is capable of detecting and categorizing any defect in thin diperiodic structures (i.e., “2D materials”) and a large subset of defects in thick diperiodic structures (i.e., 3D or bulk-like materials). Despite the somewhat limited applicability of the approach in detecting and categorizing defects in thicker bulk-like materials, it provides potentially informative insights into the presence of defects. The categorization of defects can be used to screen large quantities of data and to provide statistical data about the distribution of defects within a material. This methodology is applicable to atomic column locations extracted from any type of high-resolution image, but here we demonstrate it for HAADF STEM images.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"6 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-020-00070-x","citationCount":"9","resultStr":"{\"title\":\"Detection of defects in atomic-resolution images of materials using cycle analysis\",\"authors\":\"Oleg S. Ovchinnikov,&nbsp;Andrew O’Hara,&nbsp;Stephen Jesse,&nbsp;Bethany M. Hudak,&nbsp;Shi‐Ze Yang,&nbsp;Andrew R. Lupini,&nbsp;Matthew F. Chisholm,&nbsp;Wu Zhou,&nbsp;Sergei V. Kalinin,&nbsp;Albina Y. Borisevich,&nbsp;Sokrates T. Pantelides\",\"doi\":\"10.1186/s40679-020-00070-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The automated detection of defects in high-angle annular dark-field <i>Z</i>-contrast (HAADF) scanning-transmission-electron microscopy (STEM) images has been a major challenge. Here, we report an approach for the automated detection and categorization of structural defects based on changes in the material’s local atomic geometry. The approach applies geometric graph theory to the already-found positions of atomic-column centers and is capable of detecting and categorizing any defect in thin diperiodic structures (i.e., “2D materials”) and a large subset of defects in thick diperiodic structures (i.e., 3D or bulk-like materials). Despite the somewhat limited applicability of the approach in detecting and categorizing defects in thicker bulk-like materials, it provides potentially informative insights into the presence of defects. The categorization of defects can be used to screen large quantities of data and to provide statistical data about the distribution of defects within a material. This methodology is applicable to atomic column locations extracted from any type of high-resolution image, but here we demonstrate it for HAADF STEM images.</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-020-00070-x\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-020-00070-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-020-00070-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9

摘要

高角度环形暗场z对比(HAADF)扫描透射电子显微镜(STEM)图像中缺陷的自动检测一直是一个主要挑战。在这里,我们报告了一种基于材料局部原子几何形状变化的结构缺陷自动检测和分类的方法。该方法将几何图理论应用于已经发现的原子柱中心位置,并且能够检测和分类薄双周期结构(即“2D材料”)中的任何缺陷和厚双周期结构(即3D或块状材料)中的大部分缺陷。尽管该方法在检测和分类较厚的块状材料中的缺陷方面的适用性有些有限,但它为缺陷的存在提供了潜在的信息见解。缺陷的分类可以用来筛选大量的数据,并提供关于材料中缺陷分布的统计数据。这种方法适用于从任何类型的高分辨率图像中提取的原子柱位置,但这里我们演示它用于HAADF STEM图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of defects in atomic-resolution images of materials using cycle analysis

The automated detection of defects in high-angle annular dark-field Z-contrast (HAADF) scanning-transmission-electron microscopy (STEM) images has been a major challenge. Here, we report an approach for the automated detection and categorization of structural defects based on changes in the material’s local atomic geometry. The approach applies geometric graph theory to the already-found positions of atomic-column centers and is capable of detecting and categorizing any defect in thin diperiodic structures (i.e., “2D materials”) and a large subset of defects in thick diperiodic structures (i.e., 3D or bulk-like materials). Despite the somewhat limited applicability of the approach in detecting and categorizing defects in thicker bulk-like materials, it provides potentially informative insights into the presence of defects. The categorization of defects can be used to screen large quantities of data and to provide statistical data about the distribution of defects within a material. This methodology is applicable to atomic column locations extracted from any type of high-resolution image, but here we demonstrate it for HAADF STEM images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
期刊最新文献
Detection of defects in atomic-resolution images of materials using cycle analysis Imaging of polymer:fullerene bulk-heterojunctions in a scanning electron microscope: methodology aspects and nanomorphology by correlative SEM and STEM mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations Optimal principal component analysis of STEM XEDS spectrum images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1