Gregory H. Golet, Kristen E. Dybala, Matthew E. Reiter, Kristin A. Sesser, Mark Reynolds, Rodd Kelsey
{"title":"滨鸟食物能量短缺和栖息地激励计划在创纪录的潮湿、干燥和温暖年份的有效性","authors":"Gregory H. Golet, Kristen E. Dybala, Matthew E. Reiter, Kristin A. Sesser, Mark Reynolds, Rodd Kelsey","doi":"10.1002/ecm.1541","DOIUrl":null,"url":null,"abstract":"<p>Programs that incentivize private landowners to create habitats that offset losses due to conversion and climate change are increasingly being used to bolster sensitive wildlife populations. In the Central Valley of California, shorebird habitat incentive programs pay landowners to create additional habitat during the non-breeding season by flooding their fields. However, it remains unclear how successful these programs have been in supporting baseline shorebird population needs or meeting established population goals, particularly in the face of changing environmental conditions. To address these questions, we used bioenergetics modeling to estimate shorebird food energy needs over four consecutive years that had the highest annual mean air temperatures ever recorded in California, and included years of extreme drought, as well as the second wettest winter on record. Our objectives were to (1) characterize annual variability in the timing and magnitude of shorebird food energy shortfalls, (2) estimate the contributions that incentive programs made to meeting these needs, and (3) develop recommendations for implementation of future habitat programs to advance shorebird conservation in the region. Overall, we found a high level of consistency in the timing and magnitude of habitat shortfalls, especially in fall, despite large differences in annual rainfall, a result that was unexpected, but that emphasizes how highly managed the hydrological system is in the Central Valley. We also found that the magnitude of both fall and spring energy shortfalls increased, relative to recent (2007–2014) estimates, perhaps due to aberrantly warm conditions. Incentive programs implemented to provide supplemental habitat were somewhat effective in reducing shortfalls for the assumed baseline population, but there were consistent unmet habitat needs when there were not enough shallow open water foraging areas available. Strategies to offset these remaining food energy deficits include scaling up habitat investments, adjusting the timing of habitat programs to better match the migration patterns of the birds, and adapting programs to new geographies. To the extent that there is variability in annual habitat need we recommend implementing a dynamic conservation approach. This involves scaling the amount of additional habitat created to match the shifting needs of the birds to maximize return on investment.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1541","citationCount":"0","resultStr":"{\"title\":\"Shorebird food energy shortfalls and the effectiveness of habitat incentive programs in record wet, dry, and warm years\",\"authors\":\"Gregory H. Golet, Kristen E. Dybala, Matthew E. Reiter, Kristin A. Sesser, Mark Reynolds, Rodd Kelsey\",\"doi\":\"10.1002/ecm.1541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Programs that incentivize private landowners to create habitats that offset losses due to conversion and climate change are increasingly being used to bolster sensitive wildlife populations. In the Central Valley of California, shorebird habitat incentive programs pay landowners to create additional habitat during the non-breeding season by flooding their fields. However, it remains unclear how successful these programs have been in supporting baseline shorebird population needs or meeting established population goals, particularly in the face of changing environmental conditions. To address these questions, we used bioenergetics modeling to estimate shorebird food energy needs over four consecutive years that had the highest annual mean air temperatures ever recorded in California, and included years of extreme drought, as well as the second wettest winter on record. Our objectives were to (1) characterize annual variability in the timing and magnitude of shorebird food energy shortfalls, (2) estimate the contributions that incentive programs made to meeting these needs, and (3) develop recommendations for implementation of future habitat programs to advance shorebird conservation in the region. Overall, we found a high level of consistency in the timing and magnitude of habitat shortfalls, especially in fall, despite large differences in annual rainfall, a result that was unexpected, but that emphasizes how highly managed the hydrological system is in the Central Valley. We also found that the magnitude of both fall and spring energy shortfalls increased, relative to recent (2007–2014) estimates, perhaps due to aberrantly warm conditions. Incentive programs implemented to provide supplemental habitat were somewhat effective in reducing shortfalls for the assumed baseline population, but there were consistent unmet habitat needs when there were not enough shallow open water foraging areas available. Strategies to offset these remaining food energy deficits include scaling up habitat investments, adjusting the timing of habitat programs to better match the migration patterns of the birds, and adapting programs to new geographies. To the extent that there is variability in annual habitat need we recommend implementing a dynamic conservation approach. This involves scaling the amount of additional habitat created to match the shifting needs of the birds to maximize return on investment.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"92 4\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1541\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1541\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1541","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Shorebird food energy shortfalls and the effectiveness of habitat incentive programs in record wet, dry, and warm years
Programs that incentivize private landowners to create habitats that offset losses due to conversion and climate change are increasingly being used to bolster sensitive wildlife populations. In the Central Valley of California, shorebird habitat incentive programs pay landowners to create additional habitat during the non-breeding season by flooding their fields. However, it remains unclear how successful these programs have been in supporting baseline shorebird population needs or meeting established population goals, particularly in the face of changing environmental conditions. To address these questions, we used bioenergetics modeling to estimate shorebird food energy needs over four consecutive years that had the highest annual mean air temperatures ever recorded in California, and included years of extreme drought, as well as the second wettest winter on record. Our objectives were to (1) characterize annual variability in the timing and magnitude of shorebird food energy shortfalls, (2) estimate the contributions that incentive programs made to meeting these needs, and (3) develop recommendations for implementation of future habitat programs to advance shorebird conservation in the region. Overall, we found a high level of consistency in the timing and magnitude of habitat shortfalls, especially in fall, despite large differences in annual rainfall, a result that was unexpected, but that emphasizes how highly managed the hydrological system is in the Central Valley. We also found that the magnitude of both fall and spring energy shortfalls increased, relative to recent (2007–2014) estimates, perhaps due to aberrantly warm conditions. Incentive programs implemented to provide supplemental habitat were somewhat effective in reducing shortfalls for the assumed baseline population, but there were consistent unmet habitat needs when there were not enough shallow open water foraging areas available. Strategies to offset these remaining food energy deficits include scaling up habitat investments, adjusting the timing of habitat programs to better match the migration patterns of the birds, and adapting programs to new geographies. To the extent that there is variability in annual habitat need we recommend implementing a dynamic conservation approach. This involves scaling the amount of additional habitat created to match the shifting needs of the birds to maximize return on investment.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.